Startseite Mathematik Distributivity of a Uni-nullnorm with Continuous and Archimedean Underlying T-norms and T-conorms Over an Arbitrary Uninorm
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Distributivity of a Uni-nullnorm with Continuous and Archimedean Underlying T-norms and T-conorms Over an Arbitrary Uninorm

  • Dragan Jočić EMAIL logo und Ivana Štajner-Papuga
Veröffentlicht/Copyright: 18. Dezember 2023
Veröffentlichen auch Sie bei De Gruyter Brill

ABSTRACT

The issue of distributivity of aggregation operators is crucial for many different areas such as fuzzy sets and fuzzy logic, pseudo-analysis and measure theory, and particulary in the decision making theory. The problem of distributivity of an operator form a special class of uni-nullnorms over a general uninorm is being addressed through this paper. The class in question consists of uni-nullnorms with continuous and Archimedean underlying t-norms and t-conorms, and the results presented here are a natural continuation and extension of some previous works with an emphasis on a much wider class of uninorms as inner operators.

2020 Mathematics Subject Classification: Primary 39B22; 03B52

(Communicated by Anatolij Dvurečenskij)


The authors gratefully acknowledge the financial support of the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Grant No. 451-03-47/2023-01/200125)

REFERENCES

[1] Aczél, J.: Lectures on Functional Equations and their Applications, Academic Press, New York, 1966.Suche in Google Scholar

[2] Akella, P.: Structure of n-uninorms, Fuzzy Sets and Systems 158 (2007), 1631–1651.10.1016/j.fss.2007.02.015Suche in Google Scholar

[3] Drewniak, J.—Drygaś, P.—Rak, E.: Distributivity between uninorms and nullnorms, Fuzzy Sets and Systems 159 (2008), 1646–1657.10.1016/j.fss.2007.09.015Suche in Google Scholar

[4] Drygaś, P.—Qin, F.—Rak, E.: Left and right distributivity equations for semi-t-operators and uninorms, Fuzzy Sets and Systems 325 (2017), 21–34.10.1016/j.fss.2017.04.012Suche in Google Scholar

[5] Drygaś, P.—Rak, E.: Distributivity equation in the class of 2-uninorms, Fuzzy Sets and Systems 291 (2016), 82–97.10.1016/j.fss.2015.02.014Suche in Google Scholar

[6] Fodor, J. C.— Yager, R. R—Rybalov, A.: Structure of uninorms, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411–427.10.1142/S0218488597000312Suche in Google Scholar

[7] Grabisch, M.—Marichal, J. L—Mesiar, R.—Pap, E.: Aggregations Functions, Cambridge University Press, New York, 2009.10.1017/CBO9781139644150Suche in Google Scholar

[8] Jočić, D.—štajner-Papuga, I.: Some implications of the restricted distributivity of aggregation operators with absorbing elements for utility theory, Fuzzy Sets and Systems 291 (2016), 54–65.10.1016/j.fss.2015.06.003Suche in Google Scholar

[9] JOčić, D.—štajner-Papuga, I.: Distributivity and conditional distributivity for T-uninorms, Information Sciences 424 (2018), 91–103.10.1016/j.ins.2017.09.065Suche in Google Scholar

[10] JOčić, D.—štajner-Papuga, I.: Distributivity equations for aggregation operations with annihilator over uninorms, Aequationes Math. 96 (2022), 677–699.10.1007/s00010-021-00844-4Suche in Google Scholar

[11] Klement, E. P.—Mesiar, R.—Pap, E.: Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.10.1007/978-94-015-9540-7Suche in Google Scholar

[12] Li, G.—Liu, H.-W,—Su, Y.: On the conditional distributivity of nullnorms over uninorms, Information Sciences 317 (2015), 157–169.10.1016/j.ins.2015.04.040Suche in Google Scholar

[13] Mas, M.—Massanet, S.—Ruiz-Aguilera, D.—Torrens, J.: A survey on the existing classes of uninorms, J. Intell. Fuzzy Syst. 29 (2015), 1021–1037.10.3233/IFS-151728Suche in Google Scholar

[14] Mesiarová-Zemánková, A.: Characterization of uninorms with continuous underlying t-norm and t-conorm by means of an exended ordinal sum construction, Internat. J. Approx. Reason. 83 (2017), 176–192.10.1016/j.ijar.2017.01.007Suche in Google Scholar

[15] Mesiarová-Zemánková, A.: The n-uninorms with continuous underlying t-norms and t-conorms, Int. J. Gen. Syst. 50(1) (2021), 92–116.10.1080/03081079.2020.1863395Suche in Google Scholar

[16] Ruiz, D.—Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm, IEEE Transactions on Fuzzy Systems 14(2) (2006), 180–190.10.1109/TFUZZ.2005.864087Suche in Google Scholar

[17] Ruiz-Aguilera, D.—Torrens, J.—De Baets, B.—Fodor, J. C.: Some remarks on the characterization of idempotent uninorms. In: Proceedings of the 13th IPMU Conference 2010 (E. Hullermeier, R. Kruse, F. Hoffmann, eds.), Lect. Notes Comput. Sci. 6178, Springer-Verlag, 2010, pp. 425–434.10.1007/978-3-642-14049-5_44Suche in Google Scholar

[18] Su, J.—Liu, H.-W—Ruiz-Aguilera, D.—Vicente Riera, J.—Torrens, J.: On the distributivity property for uninorms, Fuzzy Sets and Systems 287 (2016), 184–202.10.1016/j.fss.2015.06.023Suche in Google Scholar

[19] Su, J.—Liu, H.-W—Vicente Riera, J.—Ruiz-Aguilera, D.—Torrens, J.: The distributivity equation for uninorms revisited, Fuzzy Sets and Systems 334 (2018), 1–23.10.1016/j.fss.2016.11.015Suche in Google Scholar

[20] Su, Y.—Zong, W.—Liu, H.-W.: On distributivity equations for uninorms over semi-t-operators, Fuzzy Sets and Systems 299 (2016), 41–65.10.1016/j.fss.2015.08.001Suche in Google Scholar

[21] Sun, F.—Wang, X. P—Qu, X. B.: Uni-nullnorms and null-uninorms, J. Intell. Fuzzy Syst. 32 (2017), 1969–1981.10.3233/JIFS-161495Suche in Google Scholar

[22] Sun, F.—Wang, X. P—Qu, X. B.: Characterizations of uni-nullnorms with continuous Archimedean t-norms and t-conorms, Fuzzy Sets and Systems 334 (2018), 24–35.10.1016/j.fss.2017.03.001Suche in Google Scholar

[23] Sun, X. R.—Liu, H.-W.: The left (right) distributivity of semi-t-operators over 2-uninorms, Iran. J. Fuzzy Syst. 17(3) (2020), 103–116.Suche in Google Scholar

[24] Wang, G.—Qin, F.—Li, H.-W.: Distributivity and conditional distributivity for uni-nullnorms, Fuzzy Sets and Systems 372 (2019), 34–49.10.1016/j.fss.2018.08.008Suche in Google Scholar

[25] Wang, G.—Qin, F.—Li, H.-W.: Conditional distributivity for uni-nullnorms with continuous and Archimedean underlying t-norms and t-conorms, J. Intell. Fuzzy Syst. 36 (2019), 2773–2785.10.3233/JIFS-181702Suche in Google Scholar

[26] Wang, J. M.—Liu, H.-W.: On the distributivity equation for uni-nullnorms, Kybernetika 55(1) (2019), 24–43.10.14736/kyb-2019-1-0024Suche in Google Scholar

[27] Yager, R. R.—Rybalov, A.: Uninorm aggregation operators, Fuzzy Sets and Systems 80 (1996), 111–120.10.1016/0165-0114(95)00133-6Suche in Google Scholar

[28] Zhang, F.-X.—Rak, E.—Bazan, J.: On the distributivity of continuous triangular norms and triangular conorms with respect to 2-uninorms, Fuzzy Sets and Systems 395 (2020), 168–177.10.1016/j.fss.2019.09.002Suche in Google Scholar

[29] Zhang, T.-H.—Qin, F.: On distributive laws between 2-uninorms and overlap (grouping) functions, Internat. J. Approx. Reason. 119 (2020), 353–372.10.1016/j.ijar.2020.01.008Suche in Google Scholar

[30] Zhang, T.-H.—Qin, F.—Li, W.-H.: On the distributivity equations between uni-nullnorms and overlap (grouping) functions, Fuzzy Sets and Systems 403 (2021), 56–67.10.1016/j.fss.2019.12.005Suche in Google Scholar

Received: 2022-09-28
Accepted: 2023-01-24
Published Online: 2023-12-18

© 2023 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0110/html?lang=de
Button zum nach oben scrollen