Startseite Mathematik Oscillation and asymptotic behavior of a higher-order neutral delay difference equation with variable delays under Δm
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oscillation and asymptotic behavior of a higher-order neutral delay difference equation with variable delays under Δm

  • Chittaranjan Behera , Radhanath Rath EMAIL logo und Prayag Prasad Mishra
Veröffentlicht/Copyright: 29. Januar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this article we obtain sufficient conditions for the oscillation of all solutions of the higher-order delay difference equation

Δm(ynj=1kpnjynmj)+vnG(yσ(n))unH(yα(n))=fn,

where m is a positive integer and Δ xn = xn+1xn. Also we obtain necessary conditions for a particular case of the above equation. We illustrate our results with examples for which it seems no result in the literature can be applied.

MSC 2010: 39A10; 39A12
  1. (Communicated by Michal Fečkan)

Acknowledgement

The authors are thankful and obliged to to the referee for his helpful comments to improve the presentation of the paper.

References

[1] Attia, E. R.—Beneka, V.—El-Morshedy, H. A.—Stavroulakis, I. P.: Oscillation of first order linear differential equations with several non-monotone delays, Open Math. 16 (2018), 83–94.10.1515/math-2018-0010Suche in Google Scholar

[2] Behera, C. R.—Rath, R. N.—Mishra, P. P.: Oscillation for super linear /linear second order neutral difference equations with variable several delays, International Journal of Mathematical, Engineering and Management Sciences 5(4) (2020), 663–681.10.33889/IJMEMS.2020.5.4.054Suche in Google Scholar

[3] Chatzarakis, G. E.—Dix, J. G.: Oscillations of non linear difference equations with deviating arguments, Math. Bohem. 143(1) (2018), 67–87.10.21136/MB.2017.0055-16Suche in Google Scholar

[4] Cheng, S. S.—Patula, W. T.: An existence theorem for a non linear difference equation, Nonlinear Anal. 20 (1993), 193–203.10.1016/0362-546X(93)90157-NSuche in Google Scholar

[5] Erbe, L. H.—Kong, Q. K.—Zhang, B. G.: Oscillation Theory For Functional Differential Equations, Marcel Dekker, New York, 1995.Suche in Google Scholar

[6] Gyori, I.—Ladas, G.: Oscillation Theory of Delay-Differential Equations with Applications, Clarendon Press, Oxford, 1991.10.1093/oso/9780198535829.001.0001Suche in Google Scholar

[7] Hilderbrandt, T. H.: Introduction to the Theory of Integration, Academic Press, New-York, 1963.Suche in Google Scholar

[8] Ladde, G. S.—Lakshmikantham, V.—Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker Inc., New York, 1987.Suche in Google Scholar

[9] Parhi, N.—Tripathy, A. K.: Oscillation of a class of non-linear neutral difference equations of higher order, J. Math. Anal. Appl. 284 (2003), 756–774.10.1016/S0022-247X(03)00298-1Suche in Google Scholar

[10] Parhi, N.—Tripathy, A. K.: Oscillation of forced nonlinear neutral delay difference equations of first order, Czechoslovak Math. J. 53 (2003), 83–101.10.1023/A:1022975525370Suche in Google Scholar

[11] Rath, R. N.—Barik, B. L. S.—Rath, S. K.: Oscillation of higher order neutral functional difference equations with positive and negative coefficients, Math. Slovaca 60(3) (2010), 361–384.10.2478/s12175-010-0018-6Suche in Google Scholar

[12] Rath, R. N.—Behera, C. R.—Bhuyan, A. K.: Oscillatory and asymptotic behavior of higher order neutral difference equations, Acta Math. Acad. Paedagog. Nyházi (N.S.) 31(2) (2015), 233–248.Suche in Google Scholar

[13] Rath, R. N.—Behera, C. R.: Oscillatory and asymptotic behavior of a first order neutral equation of discrete type with variable several delay under Δ sign, Int. J. Math. Math. Sci. 2018 (2018), Art. ID 4586176.10.1155/2018/4586176Suche in Google Scholar

[14] Rath, R. N.—Padhy, L. N.: Necessary and sufficient conditions for oscillation of solutions a first order forced nonlinear difference equation with several delays. Fasc. Math. 35 (2005), 99–113.Suche in Google Scholar

[15] Royden, H. L.: Real Analysis, (3rd ed.), MacMillan Publ. Co., New York, 1988.Suche in Google Scholar

[16] Sundaram, P.—Sadhasivam, V.: On forced first order neutral difference equations with positive and negative coefficients, J. Indian Acad. Math. 26 (2004), 211–227.Suche in Google Scholar

[17] Thandapani, E. et al: Asymptotic behaviour and oscillation of solutions of neutral delay difference equations of arbitrary order, Math. Slovaca 47 (1997), 539–551.Suche in Google Scholar

[18] Thandapani, E. et al: Oscillation of higher order neutral difference equation with a forcing term, Int. J. Math. Math. Sci. 22(1) (1999), 147–154.10.1155/S0161171299221473Suche in Google Scholar

[19] Thandapani, E.—Mahalingam, K.: Necessary and sufficient conditions for oscillation of second order neutral difference equations, Tamkang J. Math. 34 (2003), 137–145.10.5556/j.tkjm.34.2003.260Suche in Google Scholar

[20] Tang, X. H.—Yu, J. S.—Peng, D. H.: Oscillation and non-oscillation of neutral difference equations with positive and negative coefficients, Comput. Math. Appl. 39 (2000), 169–181.10.1016/S0898-1221(00)00073-0Suche in Google Scholar

[21] Yildiz, M. K.—Ocalan, O.: Oscillation results for higher order non-linear neutral delay difference equations, Appl. Math. Lett. 20 (2007), 243–247.10.1016/j.aml.2006.05.001Suche in Google Scholar

Received: 2019-12-09
Accepted: 2020-05-17
Published Online: 2021-01-29
Published in Print: 2021-02-23

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0457/pdf?lang=de
Button zum nach oben scrollen