Startseite On 4-th root metrics of isotropic scalar curvature
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On 4-th root metrics of isotropic scalar curvature

  • Akbar Tayebi
Veröffentlicht/Copyright: 13. Januar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we prove that every non-Riemannian 4-th root metric of isotropic scalar curvature has vanishing scalar curvature. Then, we show that every 4-th root metric of weakly isotropic flag curvature has vanishing scalar curvature. Finally, we find the necessary and sufficient condition under which the conformal change of a 4-th root metric is of isotropic scalar curvature.

  1. Communicated by Július Korbaš

Acknowledgement

The author would like to thank Professors Behzad Najafi and Hideo Shimada for their valuable comments and their encouragements during preparation of this manuscript. Also, the author would like to thank the referee for his/her careful reading of the manuscript and exact suggestions.

References

[1] Akbar-Zadeh, H.: Initiation to Global Finslerian Geometry, Elsevier, 2006.Suche in Google Scholar

[2] Akbar-Zadeh, H.: Sur les espaces de Finsler á courbures sectionnelles constantes, Bull. Acad. Roy. Belg. Cl. Sci. 74(5) (1988), 271–322.10.3406/barb.1988.57782Suche in Google Scholar

[3] Akbar-Zadeh, H.: Generalized Einstein manifolds, J. Geom. Phys. 17 (1995), 342–380.10.1016/0393-0440(94)00052-2Suche in Google Scholar

[4] Antonelli, P. L.—Ingarden, R.—Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ., Netherlands, 199).Suche in Google Scholar

[5] Bao, D.—Chern, S. S.—Shen, Z.: An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.10.1007/978-1-4612-1268-3Suche in Google Scholar

[6] Bácsó, S.—Cheng, X.: Finsler conformal transformations and the curvature invariance, Publ. Math. Debrecen 70(1-2) (2007), 221–231.10.5486/PMD.2007.3606Suche in Google Scholar

[7] Bao, D.—Robles, C.: Ricci and flag curvatures in Finsler geometry, A Sampler of Riemann-Finsler Geometry, MSRI Publications 50 (2004), 198–256.Suche in Google Scholar

[8] Cheng, X.—Yuan, M.: On Randers metrics of isotropic scalar curvature, Publ. Math. Debrecen 84 (2014), 63–74.10.5486/PMD.2014.5833Suche in Google Scholar

[9] Li, B.—Shen, Z.: Ricci curvature tensor and non-Riemannian quantities, Canad. Math. Bull. 58 (2015), 530–537.10.4153/CMB-2014-063-4Suche in Google Scholar

[10] Li, B.—Shen, Z.: On projectively flat fourth root metrics, Canad. Math. Bull. 55 (2012), 138–145.10.4153/CMB-2011-056-5Suche in Google Scholar

[11] Najafi, B.—Shen, Z.—Tayebi, A.: Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata 131 (2008), 87–97.10.1007/s10711-007-9218-9Suche in Google Scholar

[12] Shimada, H.: On Finsler spaces with metricai1i2imyi1yi2yimm, Tensor (N.S.) 33 (1979), 365–372.Suche in Google Scholar

[13] Shimada, H.: On the Ricci tensors of particular Finsler spaces, J. Korean Math. Soc. 14 (1977), 41–63.Suche in Google Scholar

[14] Tayebi, A.: On generalized 4-th root metrics of isotropic scalar curvature, Math. Slovaca 68 (2018), 907–928.10.1515/ms-2017-0154Suche in Google Scholar

[15] Tayebi, A.: On the theory of 4-th root Finsler metrics, Tbil. Math. J. 12(1) (2019), 83–92.10.32513/tbilisi/1553565628Suche in Google Scholar

[16] Tayebi, A.—Najafi, B.: On a class of homogeneous Finsler metrics, J. Geom. Phys. 140 (2019), 265–270.10.1016/j.geomphys.2019.01.006Suche in Google Scholar

[17] Tayebi, A.—Najafi, B.: On m-th root Finsler metrics, J. Geom. Phys. 61 (2011), 1479–1484.10.1016/j.geomphys.2011.03.012Suche in Google Scholar

[18] Tayebi, A.—Najafi, B.: On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I. 349 (2011), 691–693.10.1016/j.crma.2011.06.004Suche in Google Scholar

[19] Tayebi, A.—Razgordani, M.: Four families of projectively flat Finsler metrics with K = 1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 112 (2018), 1463–1485.10.1007/s13398-017-0443-2Suche in Google Scholar

[20] Tayebi, A.—Razgordani, M.: On conformally flat fourth root (α, β)-metrics, Differential Geom. Appl. 62 (2019), 253–266.10.1016/j.difgeo.2018.12.002Suche in Google Scholar

[21] Tayebi, A.—Shahbazi Nia, M.: A new class of projectively flat Finsler metrics with constant flag curvature K = 1, Differential Geom. Appl. 41 (2015), 123–133.10.1016/j.difgeo.2015.05.003Suche in Google Scholar

[22] Xu, B.—Li, B.: On a class of projectively flat Finsler metrics with flag curvature K = 1, Differential Geom. Appl. 31 (2013), 524–532.10.1016/j.difgeo.2013.05.001Suche in Google Scholar

[23] Yajima, T.—Nagahama, H.: Finsler geometry for nonlinear path of fluids flow through inhomogeneous media, Nonlinear Anal. Real World Appl. 25 (2015), 1–8.10.1016/j.nonrwa.2015.02.009Suche in Google Scholar

[24] Yu, Y.—You, Y.: On Einstein m-th root metrics, Differential Geom. Appl. 28 (2010), 290–294.10.1016/j.difgeo.2009.10.011Suche in Google Scholar

Received: 2019-03-14
Accepted: 2019-06-17
Published Online: 2020-01-13
Published in Print: 2020-02-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0341/html?lang=de
Button zum nach oben scrollen