Home Mathematics Remarks on b-metrics, ultrametrics, and metric-preserving functions
Article
Licensed
Unlicensed Requires Authentication

Remarks on b-metrics, ultrametrics, and metric-preserving functions

  • Suchat Samphavat , Tammatada Khemaratchatakumthorn EMAIL logo and Prapanpong Pongsriiam
Published/Copyright: January 13, 2020
Become an author with De Gruyter Brill

Abstract

We introduce new classes of functions related to metric-preserving functions, b-metrics, and ultrametrics. We investigate their properties and compare them to those of metric-preserving functions.


pongsriiam_p@silpakorn.edu
  1. Communicated by Tomasz Natkaniec

Acknowledgement

Prapanpong Pongsriiam currently receives financial support jointly from the Thailand Research Fund and Faculty of Science Silpakorn University, grant number RSA5980040. We thank the referees for giving us suggestions and comments which improve the quality of this paper.

References

[1] Avgustinovich, S.—Fon-Der-Flaass, D.: Cartesian Products of Graphs and Metric Spaces, Eur. J. Comb. 21 (2000), 847–851.10.1006/eujc.2000.0401Search in Google Scholar

[2] Bakhtin, I. A.: The contraction mapping principle in quasimetric spaces, Funct. Anal. 30 (1989), 26–37.Search in Google Scholar

[3] Bernig, A.—Foertsch, T.—Schroeder, V.: Non standard metric products, Beitr. Algebra Geom. 44(2) (2003), 499–510.Search in Google Scholar

[4] Borsík, J.—Doboš, J.: On metric preserving functions, Real Anal. Exchange 13 (1987–88), 285–293.10.2307/44151879Search in Google Scholar

[5] Borsík, J.—Doboš, J.: Functions whose composition with every metric is a metric, Math. Slovaca 31 (1981), 3–12.Search in Google Scholar

[6] Borsík, J.—Doboš, J.: On a product of metric spaces, Math. Slovaca 31(2) (1981), 193–205.Search in Google Scholar

[7] Corazza, P.: Introduction to metric-preserving functions, Amer. Math. Monthly 106(4) (1999), 309–323.10.1080/00029890.1999.12005048Search in Google Scholar

[8] Das, P. P.: Metricity preserving transforms, Pattern Recognition Letters 10 (1989), 73–76.10.1016/0167-8655(89)90069-XSearch in Google Scholar

[9] Doboš, J.: Metric Preserving Functions, Online Lecture Notes, available at http://web.science.upjs.sk/jozefdobos/wp-content/uploads/2012/03/mpf1.pdf.Search in Google Scholar

[10] Doboš, J.: On modification of the Euclidean metric on reals, Tatra Mt. Math. Publ. 8 (1996), 51–54.Search in Google Scholar

[11] Doboš, J.: A survey of metric-preserving functions, Questions Answers Gen. Topology 13 (1995), 129–133.Search in Google Scholar

[12] Doboš, J.—Piotrowski, Z.: A note on metric-preserving functions, Internat. J. Math. Math. Sci. 19 (1996), 199–200.10.1155/S0161171296000282Search in Google Scholar

[13] Doboš, J.—Piotrowski, Z.: Some remarks on metric-preserving functions, Real Anal. Exchange 19 (1993–94), 317–320.10.2307/44153846Search in Google Scholar

[14] Dovgoshey, O.—Martio, O.: Products of metric spaces, covering numbers, packing numbers, and characterizations of ultrametric spaces, Rev. Roumaine Math. Pures Appl. 54(5–6) (2009), 423–439.Search in Google Scholar

[15] Dovgoshey, O.—Martio, O.: Functions transferring metrics to metrics, Beitr. Algebra Geom. 54 (2013), 237–261.10.1007/s13366-011-0061-7Search in Google Scholar

[16] Dovgoshey, O.—Petrov, E.—Kozub, G.: Metric products and continuation of isotone functions, Math. Slovaca 64(1) (2014), 187–208.10.2478/s12175-013-0195-1Search in Google Scholar

[17] Foertsch, T.—Schroeder, V.: Minkowski versus Euclidean rank for products of metric spaces, Adv. Geom. 2(2) (2002), 123–133.10.1515/advg.2002.002Search in Google Scholar

[18] Herburt, I.—Moszyńska, M.: On metric products, Colloq. Math. 62 (1991), 121–133.10.4064/cm-62-1-121-133Search in Google Scholar

[19] Kelly, J.: General Topology, Springer-Verlag, 1955.Search in Google Scholar

[20] Khemaratchatakumthorn, T.—Pongsriiam, P.: Remarks on b-metric and metric-preserving functions, Math. Slovaca 68(5) (2018), 1009–1016.10.1515/ms-2017-0163Search in Google Scholar

[21] Khemaratchatakumthorn, T.—Pongsriiam, P.—Samphavat, S.: Further remarks on b-metrics, metric-preserving functions, and other related metrics, Int. J. Math. Comput. Sci. 14(2) (2019), 473–480.Search in Google Scholar

[22] Kirk, W. A.—Shahzad, N.: Fixed Point Theory in Distance Spaces, Springer International Publishing Switzerland, 2014.10.1007/978-3-319-10927-5Search in Google Scholar

[23] Krasner, M.: Nombres semi-réels et espaces ultramétriques, C.R. Acad. Sci., Tome II 219 (1944), 433.Search in Google Scholar

[24] Moszyńska, M.: On the uniqueness problem for metric products, Glas. Mat. Ser. III 27(47) (1992), 145–158.Search in Google Scholar

[25] Olęedzki, J.—Spież, S.: Remarks on intrinsic isometries, Fund. Math. 119 (1983), 241–247.10.4064/fm-119-3-241-247Search in Google Scholar

[26] Petruşel, A.—Rus, I. A.—Şerban, M. A.: The role of equivalent metrics in fixed point theory, Topol. Methods Nonlinear Anal. 41(1) (2013), 85–112.10.1186/1687-1812-2013-218Search in Google Scholar

[27] Piotrowski, Z.—Vallin, R. W.: Functions which preserve Lebesgue spaces, Comment. Math. Prace Mat. 43(2) (2003), 249–255.Search in Google Scholar

[28] Pokorný, I.: Some remarks on metric-preserving functions, Tatra Mt. Math. Publ. 2 (1993), 65–68.Search in Google Scholar

[29] Pongsriiam, P.—Termwuttipong, I.: On metric-preserving functions and fixed point theorems, Fixed Point Theory Appl. (2014), Art. ID 2014:179.10.1186/1687-1812-2014-179Search in Google Scholar

[30] Pongsriiam, P.—Termwuttipong, I.: Remarks on ultrametrics and metric-preserving functions, Abstr. Appl. Anal. (2014), Art. ID 163258.10.1155/2014/163258Search in Google Scholar

[31] Sreenivasan, T. K.: Some properties of distance functions, J. Indian. Math. Soc. (N.S.) 11 (1947), 38–43.Search in Google Scholar

[32] Tardif, C.: Prefibers and the Cartesian product of metric spaces, Discrete Math. 109 (1992), 283–288.10.1016/0012-365X(92)90298-TSearch in Google Scholar

[33] Termwuttipong, I.—Oudkam, P.: Total boundedness, completeness and uniform limits of metric-preserving functions, Ital. J. Pure Appl. Math. 18 (2005), 187–196.Search in Google Scholar

[34] Terpe, F.: Metric preserving functions of several variables. In: Proc. Conf. Topology and Measure V, Binz/Germany 1987, Wiss. Beitr. Ernst–Moritz–Arndt–Univ. Greifswald, 1988, pp. 169–174.Search in Google Scholar

[35] Vallin, R. W.: Continuity and differentiability aspects of metric preserving functions, Real Anal. Exchange 25(2) (1999/00), 849–868.10.2307/44154040Search in Google Scholar

Received: 2019-04-17
Accepted: 2019-07-27
Published Online: 2020-01-13
Published in Print: 2020-02-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0331/pdf
Scroll to top button