Startseite Mathematik Entropy as an integral operator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Entropy as an integral operator

  • Mehdi Rahimi EMAIL logo
Veröffentlicht/Copyright: 22. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we introduce the concept of entropy kernel operator for compact dynamical systems of finite Kolmogorov entropy. It is a compact positive operator on a Hilbert space. Then we state the Kolmogorov entropy in terms of the eigenvalues of the entropy kernel operator.

MSC 2010: 37A35
  1. (Communicated by Werner Timmermann)

Acknowledgement

The author would like to thank the referee(s) and the editor for their comprehensive and useful comments which helped the improvement of this work to the present form.

References

[1] Adler, R. L.—Konheim, A. G.—McAndrew, M. H.: Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.10.1090/S0002-9947-1965-0175106-9Suche in Google Scholar

[2] Billingsley, P.: Ergodic Theory and Information, Wiley, Newyork, 1965.Suche in Google Scholar

[3] Bowen, R.: Invariant measures for Markov maps of the interval, Comm. Math. Phys. 69 (1976), 1–17.10.1007/BF01941319Suche in Google Scholar

[4] Breiman, L.: The individual theorem of information theory, Ann. Math. Stat. 28 (1957), 809–811; errata 31 1960, 809–810.10.1214/aoms/1177706899Suche in Google Scholar

[5] Brin, M.—Katok, A.: On local entropy in geometric dynamics. Lecture Notes in Math. 1007, Springer-Verlag, 1983, pp. 30–38.10.1007/BFb0061408Suche in Google Scholar

[6] Brown, J. R.: Ergodic Theory and Topological Dynamics, Academic Press, New York, 1976.Suche in Google Scholar

[7] Carrillo, J. A.—McCann, R. J.—Villani, C: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam. 19 (2003), 1–48.10.4171/RMI/376Suche in Google Scholar

[8] Conway, J. B.: A Course in Functional Analysis, 2nd ed., Springer-Verlag, New York, 1990.Suche in Google Scholar

[9] Feldman, J.—Moore, C. C.: Ergodic equivalence relations, cohomology and Von Neumann algebras I, II., Trans. Amer. Math. Soc. 234 (1977), 289–324; 325–359.10.1090/S0002-9947-1977-0578656-4Suche in Google Scholar

[10] Friedman, N. A.: Introduction to Ergodic Theory, Van Nostrand, 1970.Suche in Google Scholar

[11] Furuichi, S.: Fundamental properties of Tsallis relative entropy, J. Math. Phys. 45 (2004), 4868–4877.10.1063/1.1805729Suche in Google Scholar

[12] Kapur, J. N.: Generalized entropy of order α and type β, Math. Seminar 4 (1967), 78–94.Suche in Google Scholar

[13] Kolmogorov, A. N.: New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces, Dokl. Akad. Nauk 119(5) (1958), 861–864.Suche in Google Scholar

[14] Mańé, R.: Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, Heidelberg, New York, 1987.10.1007/978-3-642-70335-5Suche in Google Scholar

[15] McMillan, B.: The basic theorems of information theory. Ann. Math. Stat. 24 (1953), 196–219.10.1214/aoms/1177729028Suche in Google Scholar

[16] Oseledec, V. I.: A multiplicative ergodic theorem, Trans. Moscow Math. Soc. 19 (1968), 197–231.Suche in Google Scholar

[17] Pesin, Ya.: Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys 32 (1977), 54–114.10.1070/RM1977v032n04ABEH001639Suche in Google Scholar

[18] Phelps, R.: Lectures on Choquet’s Theorem, Van Nostrand, Princeton, N. J., 1966.10.1007/b76887Suche in Google Scholar

[19] Rahimi, M.—Riazi, A.: Entropy operator for continuous dynamical systems of finite topological entropy, Bull. Iranian Math. Soc. 38(4) (2012), 883–892.Suche in Google Scholar

[20] Rahimi, M.—Riazi, A.: Entropy functional for continuous systems of finite entropy, Acta Math. Sci. 32B(2) (2012), 775–782.10.1016/S0252-9602(12)60057-5Suche in Google Scholar

[21] Rahimi, M.—Riazi, A.: Fuzzy entropy of action of semi-groups, Math. Slovaca 66(5) (2016), 1157–1168.10.1515/ms-2016-0211Suche in Google Scholar

[22] Rathie, P. N.: On a generalized entropy and a Coding Theorem, J. Appl. Probl. 7 (1970), 124–133.10.2307/3212154Suche in Google Scholar

[23] Rényi, A.: On measures of entropy and information. In: Proc. 4th Berk. Symp. Math Statist. and Probl., University of California Press, Vol. 1, 1961, pp. 547–561.Suche in Google Scholar

[24] Ruelle, D.: An inequality for the entropy of differential maps, Bol. Soc. Bras. Mat. 9 (1987), 83–87.10.1007/BF02584795Suche in Google Scholar

[25] Shannon, C.: A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379–423, 623–656.10.1002/j.1538-7305.1948.tb01338.xSuche in Google Scholar

[26] Sharma, B. D.—Taneja, I. J.: Entropy of type (α, β) and other generalized additive measures in information theory, Metrika 22 (1975), 205–215.10.1007/BF01899728Suche in Google Scholar

[27] Sharma, B. D.—Taneja, I. J.: Three generalized additive measures of entropy, Elec. Inform. Kybern. 13 (1977), 419–433.Suche in Google Scholar

[28] Sinai, Ya. G.: On the notion of entropy of a dynamical system, Dokl. Akad. Nauk 124 (1959), 768–771.10.1007/978-0-387-87870-6_1Suche in Google Scholar

[29] Tsallis, C.—Gell-Mann, M.—Sato, Y.: Extensivity and entropy production, Europhysics News 36(6) (2005), 186–189.10.1051/epn:2005602Suche in Google Scholar

[30] Varma, R. S.: Generalizations of Renyi’s entropy of order α, J. Math. Sci. 1 (1966), 34–48.Suche in Google Scholar

[31] Walters, P.: An Introduction to Ergodic Theory, Springer-Verlag, 1982.10.1007/978-1-4612-5775-2Suche in Google Scholar

Received: 2017-08-28
Accepted: 2018-01-26
Published Online: 2019-01-22
Published in Print: 2019-02-25

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0209/html?lang=de
Button zum nach oben scrollen