Home Some topological and combinatorial properties preserved by inverse limits
Article
Licensed
Unlicensed Requires Authentication

Some topological and combinatorial properties preserved by inverse limits

  • Javier Camargo EMAIL logo and Carlos Uzcátegui
Published/Copyright: January 22, 2019
Become an author with De Gruyter Brill

Abstract

We show that the following properties are preserved under inverse limits: countable fan-tightness, q+, discrete generation and selective separability. We also present several examples based on inverse limits of countable spaces.


The authors thank La Vicerrectoría de Investigación y Extensión de la Universidad Industrial de Santander for the financial support for this work, which is part of the VIE project # C-2018-05.


  1. (Communicated by Ľubica Holá)

Acknowledgement

We are thankful to the referee for his (her) comments that improved the presentation of the paper.

References

[1] Alas, O.—Wilson, R.: Products of (weakly) discretely generated spaces, Topology Appl. 160(3) (2013), 532–537.10.1016/j.topol.2013.01.003Search in Google Scholar

[2] Arhangelskii, A. V.—Bella, A.: Countable fan-tightness versus countable tightness, Comment. Math. Univ. Carolin. 37(3) (1996), 565–576.Search in Google Scholar

[3] Barman, D.—Dow, A.: Selective separability and SS+, Topology Proc. 37 (2011), 181–204.Search in Google Scholar

[4] Bella, A.—Bonanzinga, M.—Matveev, M.—Tkachuk, V.: Selective separability: general facts and behavior in countable spaces, Topology Proc. 32 (2008), 15–30.Search in Google Scholar

[5] Bella, A.—Simon, P.: Spaces which are generated by discrete sets, Topology Appl. 135(1–3) (2004), 87–99.10.1016/S0166-8641(03)00156-1Search in Google Scholar

[6] Dow, A.—Tkachenko, M. G.—Tkachuk, V. V.—Wilson, R. G.: Topologies generated by discrete subspaces, Glas. Math. Ser. III 37(57) (2002), 187–210.Search in Google Scholar

[7] Engelking, R.: General Topology, PWN, Warszawa, 1977.Search in Google Scholar

[8] Guzmán-González, O.—Meza-Alcántara, D.: Some structural aspects of the Katětov order on Borel ideals, Order 33(2) (2016), 189–194.10.1007/s11083-015-9358-8Search in Google Scholar

[9] Hrušák, M.—Meza-Alcántara, D.—Thümmel, E.—Uzcátegui, C.: Ramsey type properties of ideals, Ann. Pure Appl. Logic 168(11) (2017), 2022–2049.10.1016/j.apal.2017.06.001Search in Google Scholar

[10] Hrušák, M.: Katětov order on Borel ideals, Arch. Math. Logic 56(7–8) (2017), 831–847.10.1007/s00153-017-0543-xSearch in Google Scholar

[11] Kechris, A. S.: Classical Descriptive Set Theory, Springer-Verlag, 1994.10.1007/978-1-4612-4190-4Search in Google Scholar

[12] Murtinova, E.: On products of discretely generated spaces, Topology Appl. 153(18) (2006), 3402–3408.10.1016/j.topol.2005.11.014Search in Google Scholar

[13] Nogura, T.: The product ofαi〉-spaces, Topology Appl. 21 (1985), 251–259.10.1016/0166-8641(85)90014-8Search in Google Scholar

[14] Nogura, T.: Fréchetness of inverse limits and products, Topology Appl. 20(1) (1985), 59–66.10.1016/0166-8641(85)90035-5Search in Google Scholar

[15] Scheepers, M.: Combinatorics of open covers VI: Selectors for sequences of dense sets, Quaest. Math. 22(1) (1999), 109–130.10.1080/16073606.1999.9632063Search in Google Scholar

[16] Simon, P.: A hedgehog in a product, Acta. Univ. Carolin. Math. Phys. 39 (1998), 147–153.Search in Google Scholar

[17] Todorčević, S.: Topics in Topology, LNM 1652, Springer, 1997.10.1007/BFb0096295Search in Google Scholar

[18] Todorčević, S.: Introduction to Ramsey spaces. Ann. of Math. Stud. 174, Princeton University Press, 2010.10.1515/9781400835409Search in Google Scholar

[19] Todorčević, S.—Uzcátegui, C.: Analytic topologies over countable sets, Topology Appl. 111(3) (2001), 299–326.10.1016/S0166-8641(99)00223-0Search in Google Scholar

[20] Todorčević, S.—Uzcátegui, C.: Analytic k-spaces, Topology Appl. 146147 (2005), 511–526.10.1016/j.topol.2003.09.013Search in Google Scholar

[21] Todorčević, S.—Uzcátegui, C.: A nodec regular analytic space, Topology Appl. 166 (2014), 85–91.10.1016/j.topol.2014.02.002Search in Google Scholar

Received: 2017-09-15
Accepted: 2018-03-26
Published Online: 2019-01-22
Published in Print: 2019-02-25

© 2019 Mathematical Institute Slovak Academy of Sciences

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0212/html
Scroll to top button