Startseite Distributive nearlattices with a necessity modal operator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Distributive nearlattices with a necessity modal operator

  • Sergio Celani EMAIL logo und Ismael Calomino
Veröffentlicht/Copyright: 22. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this paper is to study the class of distributive nearlattices with a necessity modal operator. We develop a full duality to the category of distributive nearlattices whose morphisms are applications that preserving the infimum when exists and, as special case, we obtain a representation and duality for distributive nearlattices with a necessity modal operator. We study certain particular subclasses and give some applications.


This work was supported by the CONICET under Grant PIP 112-201501-00412.


  1. (Communicated by Jan Kühr)

References

[1] Abbott, J.: Semi-boolean algebra, Mat. Vestnik 19 (1967), 177–198.Suche in Google Scholar

[2] Abbott, J.: Implicational algebras, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum. 11 (1967), 3–23.Suche in Google Scholar

[3] Araújo, J.—Kinyon, M.: Independent axiom systems for nearlattices, Czechoslovak Math. J. 61 (2011), 975–992.10.1007/s10587-011-0062-6Suche in Google Scholar

[4] Bezhanishvili, G.: Varieties of monadic Heyting algebras. Part I, Studia Logica 61 (1998), 367–402.10.1023/A:1005073905902Suche in Google Scholar

[5] Calomino, I.—Celani, S.: A note on annihilators in distributive nearlattices, Miskolc Math. Notes 16 (2015), 65–78.10.18514/MMN.2015.1325Suche in Google Scholar

[6] Celani, S.: Modal Tarski algebras, Rep. Math. Logic 39 (2005), 113–126.Suche in Google Scholar

[7] CELANI, S.: Simple and subdirectly irreducibles bounded distributive lattices with unary operators, Int. J. Math. Math. Sci. 2006 (2006), 1–20.10.1155/IJMMS/2006/21835Suche in Google Scholar

[8] Celani, S.—Cabrer, L.: Topological duality for Tarski algebras, Algebra Universalis 58 (2008), 73–94.10.1007/s00012-007-2041-1Suche in Google Scholar

[9] Celani, S.—Calomino, I.: Stone style duality for distributive nearlattices, Algebra Universalis 71 (2014), 127–153.10.1007/s00012-014-0269-0Suche in Google Scholar

[10] Celani, S.—Calomino, I.: On homomorphic images and the free distributive lattice extension of a distributive nearlattice, Rep. Math. Logic 51 (2016), 57–73.Suche in Google Scholar

[11] Chagrov, A.—Zakharyaschev, M.: Modal Logic, Oxford University Press, 1997.10.1093/oso/9780198537793.001.0001Suche in Google Scholar

[12] Chajda, I.—Halaš, R.—Kühr, J.: Semilattice Structures. Res. Exp. Math., Heldermann Verlag, 2007.Suche in Google Scholar

[13] Chajda, I.—Kolařík, M.: Ideals, congruences and annihilators on nearlattices, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 46 (2007), 25–33.Suche in Google Scholar

[14] Chajda, I.—Kolařík, M.: Nearlattices, Discrete Math. 308 (2008), 4906–4913.10.1016/j.disc.2007.09.009Suche in Google Scholar

[15] Chajda, I.—Länger, H.: Quantifiers on lattices with an antitone involution, Demonstr. Math. 42 (2009), 241–246.10.1515/dema-2013-0164Suche in Google Scholar

[16] Cignoli, R.: Quantifiers on distributive algebras, Discrete Math. 96 (1991), 183–197.10.1016/0012-365X(91)90312-PSuche in Google Scholar

[17] Cirulis, J.: Orthoposets with quantifiers, Bull. Sect. Logic Univ. Lodz 41 (2012), 1–12.Suche in Google Scholar

[18] Cornish, W.—Hickman, R.: Weakly distributive semilattices, Acta Math. Hungar. 32 (1978), 5–16.10.1007/BF01902195Suche in Google Scholar

[19] Halmos, P.: Algebraic Logic, Chelsea, New York, 1962.Suche in Google Scholar

[20] HalaŠ, R.: Subdirectly irreducible distributive nearlattices, Miskolc Math. Notes 7 (2006), 141–146.10.18514/MMN.2006.140Suche in Google Scholar

[21] Hickman, R.: Join algebras, Comm. Algebra 8 (1980), 1653–1685.10.1080/00927878008822537Suche in Google Scholar

[22] Stone, M.: Topological representation of distributive lattices and Brouwerian logics, Časopis pro pěstování matematiky a fysiky 67 (1938), 1–25.10.21136/CPMF.1938.124080Suche in Google Scholar

Received: 2017-02-21
Accepted: 2018-04-29
Published Online: 2019-01-22
Published in Print: 2019-02-25

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0201/html
Button zum nach oben scrollen