Home States in generalized probabilistic models: An approach based in algebraic geometry
Article
Licensed
Unlicensed Requires Authentication

States in generalized probabilistic models: An approach based in algebraic geometry

  • César Massri EMAIL logo , Federico Holik and Ángelo Plastino
Published/Copyright: January 22, 2019
Become an author with De Gruyter Brill

Abstract

We present a characterization of states in generalized probabilistic models by appealing to a non-commutative version of geometric probability theory based on algebraic geometry techniques. Our theoretical framework allows for incorporation of invariant states in a natural way.

MSC 2010: 06B15; 03G10; 46E27; 28E05; 14A25

This work has been supported by CONICET (Argentina).


  1. (Communicated by Anatolij Dvurečenskij)

References

[1] Atiyah, M. F.—Macdonald, I. G.: Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.Search in Google Scholar

[2] Buhagiar, D.—Chetcuti, E.—Dvurečenskij, A.: On Gleason’s theorem without Gleason, Found. Phys. 39(6) (2009), 550–558.10.1007/s10701-008-9265-6Search in Google Scholar

[3] Bratteli, O.—Robinson D. W.: Operator algebras and quantum statistical mechanics 1, Texts and Monographs in Physics. Springer-Verlag, New York, second edition, 1987.10.1007/978-3-662-02520-8Search in Google Scholar

[4] Bratteli, O.—Robinson D. W.: Operator algebras and quantum statistical mechanics. 2. Texts and Monographs in Physics, Springer-Verlag, Berlin, second edition, 1997.10.1007/978-3-662-03444-6Search in Google Scholar

[5] Boyd, S.—Vandenberghe, L.: Convex Optimization, Cambridge University Press, Cambridge, 2004.10.1017/CBO9780511804441Search in Google Scholar

[6] Bengtsson, I.—Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge University Press, 2006.10.1017/CBO9780511535048Search in Google Scholar

[7] Döring, A.: Kochen-Specker theorem for von Neumann algebras, Internat. J. Theoret. Phys. 44(2) (2005), 139–160.10.1007/s10773-005-1490-6Search in Google Scholar

[8] Dvurečenskij, A.: Gleason theorem for signed measures with infinite values, Math. Slovaca 35 (1985), 319–325.Search in Google Scholar

[9] Dvurečenskij, A.: Gleason’s Theorem and Its Applications. Mathematics and Its Application 60, Springer, 1993.10.1007/978-94-015-8222-3Search in Google Scholar

[10] Fulton, W.—Harris, J.: Representation Theory. Grad. Texts in Math. 129, Springer-Verlag, New York, 1991.Search in Google Scholar

[11] Gleason, A. M.: Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885–893.10.1007/978-94-010-1795-4_7Search in Google Scholar

[12] Groemer, H.: On the extension of additive functionals on classes of convex sets, Pacific J. Math. 75(2) (1978), 397–410.10.2140/pjm.1978.75.397Search in Google Scholar

[13] Gudder, S. P.: Stochastic Methods in Quantum Mechanics. Series in Probability and Applied Mathematics (A. T. Bharucha ed.), 1979.Search in Google Scholar

[14] Haag, R.: Local Quantum Physics. Texts and Monographs in Physics, Springer-Verlag, Berlin, second edition, 1996.10.1007/978-3-642-61458-3Search in Google Scholar

[15] Hamhalter, J.: Quantum Measure Theory. Fundamental Theories of Physics 134, Kluwer Academic Publishers Group, Dordrecht, 2003.10.1007/978-94-017-0119-8Search in Google Scholar

[16] Hilbert, D.: Mathematical problems, Bull. Amer. Math. Soc. 8(10) (1902), 437–479.10.1090/S0002-9904-1902-00923-3Search in Google Scholar

[17] Halvorson, H.—Müger, M.: Algebraic quantum field theory. In: Philosophy of Physics (J. Butterfield, J. Earman, eds.), Elsevier, 2006, pp. 731–922.10.1016/B978-044451560-5/50011-7Search in Google Scholar

[18] Holik, F.—Massri, C.—Plastino A.: Geometric probability theory and Jaynes’s methodology, Int. J. Geom. Methods Mod. Phys. 13(3) (2016), Art. ID: 1650025.10.1142/S0219887816500250Search in Google Scholar

[19] Holik, F.—Massri, C.—Ciancaglini, N.: Convex quantum logic, Internat. J. Theoret. Phys. 51 (2012), 1600–1620.10.1007/s10773-011-1037-ySearch in Google Scholar

[20] Holik, F.—Massri, C.—Plastino, A.—Zuberman, L.: On the lattice structure of probability spaces in quantum mechanics, Internat. J. Theoret. Phys. 5(6) (2013), 1836–1876.10.1007/s10773-012-1277-5Search in Google Scholar

[21] Holik, F.—Plastino, A.—Sáenz, M.: Natural information measures for contextual probabilistic models, Quantum Inf. Comput. 16(1–2) (2016), 0115–0133.10.26421/QIC16.1-2-8Search in Google Scholar

[22] Kalmbach, G.: Orthomodular Lattices. London Math. Soc. Monogr. Ser. 18, Academic Press, Inc., London, 1983.Search in Google Scholar

[23] Kalmbach, G.: Quantum Measures and Spaces. Mathematics and its Applications 453, Kluwer Academic Publishers, Dordrecht, 1998.10.1007/978-94-017-2827-0Search in Google Scholar

[24] Khrennikov, A.: Ubiquitous Quantum Structure-From Psychology to Finance, Springer, 2010.10.1007/978-3-642-05101-2Search in Google Scholar

[25] Klain, D. A.—Rota, G.-C.: Introduction to Geometric Probability. Lezioni Lincee, Cambridge University Press, Cambridge, 1997.Search in Google Scholar

[26] Lvovsky, A. I.—Raymer, M. G.: Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81 (2009), 299–332.10.1103/RevModPhys.81.299Search in Google Scholar

[27] Massri, C.—Holik, F.: Methods of algebraic geometry applied to the study of measures over bounded lattices, arXiv:1705.11051v1, (2017).Search in Google Scholar

[28] Murray, F. J.—Von Neumann, J.: On rings of operators, Ann. of Math. (2), 37(1) (1936), 116–229.10.2307/1968693Search in Google Scholar

[29] Murray, F. J.—Von Neumann, J.: On rings of operators II, Trans. Amer. Math. Soc. 41(2) (1937), 208–248.10.1090/S0002-9947-1937-1501899-4Search in Google Scholar

[30] Murray, F. J.—Von Neumann, J.: On rings of operators IV., Ann. of Math. (2) 44 (1943), 716–808.10.2307/1969107Search in Google Scholar

[31] Navara, M.—Rogalewicz, V.: The pasting constructions for orthomodular posets, Math. Nachr. 154(1) (1991), 157–168.10.1002/mana.19911540113Search in Google Scholar

[32] Procesi, C.: Lie Groups. Universitext, Springer, New York, 2007.Search in Google Scholar

[33] Rédei, M.: Quantum Logic in Algebraic Approach, Kluwer Academic Publishers, 1998.10.1007/978-94-015-9026-6Search in Google Scholar

[34] Rota, G.-C.: Introduction to Geometric Probability. Selected Lectures in Mathematics, American Mathematical Society, Providence, RI, 1997.Search in Google Scholar

[35] Rota, G.-C.: Geometric probability, Math. Intelligencer 20(4) (1998), 11–16.10.1007/BF03025223Search in Google Scholar

[36] Rédei, M.—Summers, S. J.: Quantum probability theory, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 38(2) (2007), 390–417.10.1016/j.shpsb.2006.05.006Search in Google Scholar

[37] Sunder, V. S.: An Invitation to von Neumann Algebras. Universitext, Springer-Verlag, New York, 1987.10.1007/978-1-4613-8669-8Search in Google Scholar

[38] Svozil, K.: Contexts in quantum, classical and partition logic. In: Handbook of Quantum Logic and Quantum Structures – Quantum Logic, Elsevier/North-Holland, Amsterdam, 2009, pp. 551–586.10.1016/B978-0-444-52869-8.50015-3Search in Google Scholar

[39] Varadarajan, V.: Geometry of Quantum Theory, volume I and II. Springer, 1968.10.1007/978-1-4615-7706-5Search in Google Scholar

[40] von Neumann, J.: On rings of operators III, Ann. of Math. (1940), 94–161.10.2307/1968823Search in Google Scholar

[41] Weibel, Ch. A.: An Introduction to Homological Algebra. Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge, 1994.Search in Google Scholar

[42] Yngvason, J.: The role of type iii factors in quantum field theory, Rep. Math. Phys. 55(1) (2005), 135–147.10.1016/S0034-4877(05)80009-6Search in Google Scholar

[43] Yukalov, V.—Sornette, D.: Quantum probabilities as behavioral probabilities, Entropy 19 (2017).10.3390/e19030112Search in Google Scholar

Received: 2017-06-10
Accepted: 2018-03-16
Published Online: 2019-01-22
Published in Print: 2019-02-25

© 2019 Mathematical Institute Slovak Academy of Sciences

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0202/html
Scroll to top button