Startseite On the 2-class field tower of subfields of some cyclotomic ℤ2-extensions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the 2-class field tower of subfields of some cyclotomic ℤ2-extensions

  • Ali Mouhib EMAIL logo
Veröffentlicht/Copyright: 22. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study the structure of the Galois group of the maximal unramified 2-extension of some family of number fields of large degree. Especially, we show that for each positive integer n, there exist infinitely many number fields with large degree, for which the defined Galois group is quaternion of order 2n.

  1. (Communicated by Milan Paštéka)

Acknowledgement

The author would like to express its gratitude to King Khalid University, Saudi Arabia for providing administrative and technical support.

The author also thanks the anonymous referee for his/her careful reading of the manuscript and helpful comments.

References

[1] Azizi, A.—Mouhib, A.: Capitulation des 2-classes d’idéaux de certains corps biquadratiques dont le corps de genres diffère du 2-corps de classe de Hilbert, Pacific J. Math. 218 (2005), 17–36.10.2140/pjm.2005.218.17Suche in Google Scholar

[2] Azizi, A.—Mouhib, A.: Capitulation des 2-classes d’idéaux deQ(2,d)où d est un entier naturel sans facteur carrés, Acta Arith. 109 (2003), 27–63.10.4064/aa109-1-2Suche in Google Scholar

[3] Azizi, A.—Mouhib, A.: Sur le 2-groupe de classes du corps de genres de certains corps biquadratiques, Ann. Sci. Math. Québec. 27 (2003), 123–134.10.2140/pjm.2003.208.1Suche in Google Scholar

[4] Azizi, A.—Talbi, M.: Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques, Arch. Math. (Brno) 44 (2008), 271–284.Suche in Google Scholar

[5] Azizi, A.—Talbi, M.: Capitulation des 2-classes d’idéaux de certains corps biquadratiques cycliques, Acta. Arith. 127 (2007), 231–248.10.4064/aa127-3-3Suche in Google Scholar

[6] Benjamin, E.—Snyder, C.: Real quadratic number fields with 2-class group of type (2,2), Math. Scand. 76 (1995), 161–178.10.7146/math.scand.a-12532Suche in Google Scholar

[7] Couture, R.—Derhem, A.: Un problème de capitulation, C. R. Acad. Sci. Paris, sér. I Math. 314 (1992), 785–788.Suche in Google Scholar

[8] Ferrero, B.: The cyclotomic2-extension of imaginary quadratic fields, Amer. J. Math. 102 (1980), 447–459.10.2307/2374108Suche in Google Scholar

[9] Gorenstein, D.: Finite Groups, Harper and Row, New York, 1968.Suche in Google Scholar

[10] Heider, F. P.—Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math. 366 (1982), 1–25.10.1515/crll.1982.336.1Suche in Google Scholar

[11] Iwasawa, K.: A note on capitulation problem for number fields, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 59–61.10.3792/pjaa.65.59Suche in Google Scholar

[12] Kisilevsky, H.: Number fields with class number congruent to 4 mod 8 and Hilbert’s theorem 94, J. Number Theory 8 (1976), 271–279.10.1016/0022-314X(76)90004-4Suche in Google Scholar

[13] Mouhib, A.: Capitulation of the 2-class group of some cyclic number fields with large degree, Math Nachr. 289(14–15) (2016), 1927–1933.10.1002/mana.201500355Suche in Google Scholar

[14] Taussky, O.: A remark concerning Hilbert’s theorem 94, J. Reine Angew. Math. 239/240 (1970), 435–438.10.1515/crll.1969.239-240.435Suche in Google Scholar

[15] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Math. 83, Second edition, Springer-Verlag, New York, 1997.10.1007/978-1-4612-1934-7Suche in Google Scholar

Received: 2017-08-16
Accepted: 2018-01-26
Published Online: 2019-01-22
Published in Print: 2019-02-25

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0204/html
Button zum nach oben scrollen