Startseite Mathematik Regular double p-algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Regular double p-algebras

  • M. E. Adams EMAIL logo , Hanamantagouda P. Sankappanavar und Júlia Vaz de Carvalho
Veröffentlicht/Copyright: 22. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we investigate the variety RDP of regular double p-algebras and its subvarieties RDPn, n ≥ 1, of range n. First, we present an explicit description of the subdirectly irreducible algebras (which coincide with the simple algebras) in the variety RDP1 and show that this variety is locally finite. We also show that the lattice of subvarieties of RDP1, LV(RDP1), is isomorphic to the lattice of down sets of the poset {1} ⊕ (ℕ × ℕ). We describe all the subvarieties of RDP1 and conclude that LV(RDP1) is countably infinite. An equational basis for each proper subvariety of RDP1 is given. To study the subvarieties RDPn with n ≥ 2, Priestley duality as it applies to regular double p-algebras is used. We show that each of these subvarieties is not locally finite. In fact, we prove that its 1-generated free algebra is infinite and that the lattice of its subvarieties has cardinality 20. We also use Priestley duality to prove that RDP and each of its subvarieties RDPn are generated by their finite members.


∗∗This work was partially supported by the Fundçãao para a Ciência e Tecnologia (Portuguese Foundation for Science and Technology) through the Project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).


  1. (Communicated by Miroslav Ploščica)

Acknowledgement

Our thanks to the referee who read the paper carefully and made thoughtful suggestions.

References

[1] Adams, M. E.—Katriňák, T.: A note on subdirectly irreducible double p-algebras, J. Aust. Math. Soc. (Ser. A) 35 (1983), 46–58.10.1017/S1446788700024769Suche in Google Scholar

[2] Balbes, R.—Dwinger, P.: Distributive Lattices, University of Missouri Press, 1974.Suche in Google Scholar

[3] Beazer, R.: The determination congruence on double p-algebras, Algebra Universalis 6 (1976), 121–129.10.1007/BF02485824Suche in Google Scholar

[4] Beazer, R.: Subdirectly irreducible double Heyting algebras, Algebra Universalis 10 (1980), 220–224.10.1007/BF02482903Suche in Google Scholar

[5] Beazer, R.: Subdirectly irreducibles for various pseudocomplemented algebras, Algebra Universalis 10 (1980), 225–231.10.1007/BF02482904Suche in Google Scholar

[6] Beazer, R.: Finitely subdirectly irreducible algebras with pseudocomplementation, Algebra Universalis 12 (1981), 376–386.10.1007/BF02483897Suche in Google Scholar

[7] Burris, S.—Sankappanavar, H. P.: A Course in Universal Algebra, Springer-Verlag, New York, 1981.10.1007/978-1-4613-8130-3Suche in Google Scholar

[8] Davey, B. A.: Subdirectly irreducible distributive double p-algebras, Algebra Universalis 8 (1978), 73–88.10.1007/BF02485372Suche in Google Scholar

[9] Davey, B. A.: On the lattice of subvarieties, Houston J. Math. 5 (1979), 183–192.Suche in Google Scholar

[10] Dziobiak, W.: The subvariety lattice of the variety of distributive double p-algebras, Bull. Austral. Math. Soc. 31 (1985), 377–387.10.1017/S0004972700009345Suche in Google Scholar

[11] Katriňák, T.: The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis 3 (1973), 238–246.10.1007/BF02945123Suche in Google Scholar

[12] Katriňák, T.: Subdirectly irreducible double p-algebras of finite range, Algebra Universalis 9 (1979), 135–141.10.1007/BF02488024Suche in Google Scholar

[13] Katriňák, T.: Subdirectly irreducible distributive doublep-algebras, Algebra Universalis 10 (1980), 195–219.10.1007/BF02482902Suche in Google Scholar

[14] Koubek, V.: Finite-to-finite universal varieties of distributive double p-algebras, Comment. Math. Univ. Carolin. 31 (1990), 67–83.Suche in Google Scholar

[15] Koubek, V.—Sichler, J.: Universal varieties of distributive double p-algebras, Glasgow Math. J. 26 (1985), 121–131.10.1017/S0017089500005887Suche in Google Scholar

[16] Koubek, V.—Sichler, J.: Categorical universality of regular double p-algebras, Glasgow Math. J. 32 (1990), 329–340.10.1017/S0017089500009411Suche in Google Scholar

[17] Koubek, V.—Sichler, J.: Finitely generated universal varieties of distributive double p-algebras, Cah. Topol. Géom. Différ. Catég. 35 (1994), 139–164.Suche in Google Scholar

[18] Koubek, V.—Sichler, J.: Amalgamation in varieties of distributive doublep-algebras, Algebra Universalis 32 (1994), 407–438.10.1007/BF01195722Suche in Google Scholar

[19] Lee, K. B.: Equational classes of distributive pseudo-complemented lattices, Canad. J. Math. 22 (1970), 881–891.10.4153/CJM-1970-101-4Suche in Google Scholar

[20] Malćev, A.: Algebraic Systems, Springer-Verlag, Berlin, 1973 (translated from the Russian: Algebraičeskie Sistemy, Nauka Press, Moscow, 1970).10.1007/978-3-642-65374-2Suche in Google Scholar

[21] McKenzie, R.—McNulty, G.—Taylor, W.: Algebras, Lattices, Varieties, Vol. 1, Wadsworth & Brooks/Cole Advanced Books & Software, California, 1987.Suche in Google Scholar

[22] Priestley, H. A.: Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186–190.10.1112/blms/2.2.186Suche in Google Scholar

[23] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507–530.10.1112/plms/s3-24.3.507Suche in Google Scholar

[24] Priestley, H. A.: The construction of spaces dual to pseudocomplemented distributive lattices, Quart. J. Math. Oxford 26 (1975), 215–228.10.1093/qmath/26.1.215Suche in Google Scholar

[25] Ribenboim, P.: Characterization of the sup-complement in a distributive lattice with last element, Summa Brasil. Math. 2 (1949), 43–49.Suche in Google Scholar

[26] Romanowska, A.—Freese, R.: Subdirectly irreducible modular double p-algebras, Houston J. Math. 3 (1977), 109–112.Suche in Google Scholar

[27] Sankappanavar, H. P.: Heyting algebras with dual pseudocomplementation, Pacific J. Math. 117 (1985), 405–415.10.2140/pjm.1985.117.405Suche in Google Scholar

[28] Sankappanavar, H. P.: Semi-De Morgan algebras, J. Symb. Log. 52 (1987), 712–724.10.1017/S0022481200029716Suche in Google Scholar

[29] Sankappanavar, H. P.: Expansions of semi-Heyting algebras I: Discriminator varieties, Studia Logica 98 (2011), 27–81.10.1007/s11225-011-9322-6Suche in Google Scholar

[30] Urquhart, A.: Equational classes of distributive double p-algebras, Algebra Universalis 14 (1982), 235–243.10.1007/BF02483924Suche in Google Scholar

[31] Varlet, J.: Algèbres de Lukasiewicz trivalentes, Bull. Soc. Roy. Sci. Liège 36 (1968), 399–408.Suche in Google Scholar

[32] Varlet, J.: A regular variety of type (2,2,1,1,0,0), Algebra Universalis 2 (1972), 218–223.10.1007/BF02945029Suche in Google Scholar

Received: 2017-07-23
Accepted: 2018-05-21
Published Online: 2019-01-22
Published in Print: 2019-02-25

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0200/html?lang=de
Button zum nach oben scrollen