Startseite Mathematik Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate

  • Ahmad Zireh EMAIL logo , Ebrahim Analouei Adegani und Mahmood Bidkham
Veröffentlicht/Copyright: 31. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we use the Faber polynomial expansion to find upper bounds for |an| (n ≥ 3) coefficients of functions belong to classes HqΣ(λ,h),STqΣ(α,h) andMqΣ(α,h) which are defined by quasi-subordinations in the open unit disk 𝕌. Further, we generalize some of the previously published results.


This work was supported by Shahrood University of Technology.



Communicated by Stanisława Kanas


Acknowledgement

The authors wish to sincerely thank the referee, for the careful reading of the paper and for the helpful suggestions and comments.

References

[1] Airault, H.—Bouali, A.: Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), 179–222.10.1016/j.bulsci.2005.10.002Suche in Google Scholar

[2] Airault, H.—Ren, J.: An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), 343–367.10.1016/S0007-4497(02)01115-6Suche in Google Scholar

[3] Airault, H.—Neretin, Y. A.: On the action of Virasoro algebra on the space of univalent functions, Bull. Sci. Math. 132 (2008), 27–39.10.1016/j.bulsci.2007.05.001Suche in Google Scholar

[4] Ali, R. M.—Lee, S. K.—Ravichandran, V.—Subramaniam, S.: Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344–351.10.1016/j.aml.2011.09.012Suche in Google Scholar

[5] Altinkaya, Ş.—Yalçin, S.: Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math. Acad. Sci. Paris. 353 (2015), 1075–1080.10.1016/j.crma.2015.09.003Suche in Google Scholar

[6] Brannan, D. A.—Taha, T. S.: On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math. 31 (1986), 70–77.10.1016/B978-0-08-031636-9.50012-7Suche in Google Scholar

[7] Bouali, A.: Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions, Bull. Sci. Math. 130 (2006), 49–70.10.1016/j.bulsci.2005.08.002Suche in Google Scholar

[8] Duren, P. L.: Univalent functions. Grundlehren Math. Wiss. 259, Springer Verlag, New York, 1983.Suche in Google Scholar

[9] Faber, G.: Über polynomische Entwickelungen, Math. Ann. 57 (1903), 389–408.10.1007/BF01444293Suche in Google Scholar

[10] Frasin, B. A.—Aouf, M. K.: New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573.10.1016/j.aml.2011.03.048Suche in Google Scholar

[11] Goyal, S. P.—Kumar, R.: Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions, Math. Slovaca. 65 (2015), 533–544.10.1515/ms-2015-0038Suche in Google Scholar

[12] Jahangiri, J. M.—Hamidi, S. G.: Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013), Article ID 190560, 4 pp.10.1155/2013/190560Suche in Google Scholar

[13] Hamidi, S. G.—Halim, S. A.—Jahangiri, J. M.: Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013), Article ID 498159, 4 pp.10.1155/2013/498159Suche in Google Scholar

[14] Hamidi, S. G.—Jahangiri, J. M.: Faber polynomial coefficients of bi-subordinate functions, C. R. Math. Acad. Sci. Paris. 354 (2016), 365–370.10.1016/j.crma.2016.01.013Suche in Google Scholar

[15] Kanas, S.—Kim, S.-A.—Sivasubramanian, S.: Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent function, Ann. Polon. Math. 113 (2015), 295–304.10.4064/ap113-3-6Suche in Google Scholar

[16] Lewin, M.: On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.10.1090/S0002-9939-1967-0206255-1Suche in Google Scholar

[17] Li, X.-F.—Wang, A.-P.: Two new subclasses of bi-univalent functions, Int. Math. Forum 7 (2012), 1495–1504.Suche in Google Scholar

[18] Ma, W. C.—Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis, Tianjin, 1992. Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994, pp. 157–169.Suche in Google Scholar

[19] Robertson, M. S.: Quasi-subordinate functions. In: Mathematical Essays dedicated to A. J. MacIntyre, Ohio University Press, Athens, OH, 1970, pp. 311–330.Suche in Google Scholar

[20] Robertson, M. S.: Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc. 76 (1970), 1–9.10.1090/S0002-9904-1970-12356-4Suche in Google Scholar

[21] Srivastava, H. M.—Mishra, A. K.—Gochhayat, P.: Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188–1192.10.1016/j.aml.2010.05.009Suche in Google Scholar

[22] Srivastava, H. M.—Bansal, D.: Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242–246.10.1016/j.joems.2014.04.002Suche in Google Scholar

[23] Todorov, P. G.: On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1991), 268–276.10.1016/0022-247X(91)90193-4Suche in Google Scholar

Received: 2016-2-17
Accepted: 2016-5-11
Published Online: 2018-3-31
Published in Print: 2018-4-25

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0108/pdf?lang=de
Button zum nach oben scrollen