Home Cleft extensions for quasi-entwining structures
Article
Licensed
Unlicensed Requires Authentication

Cleft extensions for quasi-entwining structures

  • J. N. Alonso Álvarez EMAIL logo , J. M. Fernández Vilaboa and R. González Rodríguez
Published/Copyright: March 31, 2018
Become an author with De Gruyter Brill

Abstract

In this paper we introduce the notions of quasi-entwining structure and cleft extension for a quasi-entwining structure. We prove that if (A, C, ψ) is a quasi-entwining structure and the associated extension to the submagma of coinvariants AC is cleft, there exists an isomorphism ωA between ACC and A. Moreover, we define two unital but not necessarily associative products on ACC. For these structures we obtain the necessary and sufficient conditions to assure that ωA is a magma isomorphism, giving some examples fulfilling these conditions.


Communicated by Sylvia Pulmannová


References

[1] Alonso Álvarez, J. N.—Fernández Vilaboa, J. M.—González Rodríguez, R.—Rodríguez Raposo, A. B.: Weak C-cleft extensions and weak Galois extensions, J. Algebra 299 (2006), 276–293.10.1016/j.jalgebra.2005.09.012Search in Google Scholar

[2] Alonso Álvarez, J. N.—Fernández Vilaboa, J. M.—González Rodríguez, R.—Soneira Calvo, C.: Projections and Yetter-Drinfeld modules over Hopf (co)quasigroups, J. Algebra 443 (2015), 153–199.10.1016/j.jalgebra.2015.07.007Search in Google Scholar

[3] Alonso Álvarez, J. N.—Fernández Vilaboa, J. M.—González Rodríguez, R.—Soneira Calvo, C.: Cleft comodules over Hopf quasigroups, Commun. Contemp. Math. 17 (2015), Article ID 1550007, 20 pp.10.1142/S0219199715500078Search in Google Scholar

[4] Blattner, R.—Cohen, M.—Montgomery, S.: Crossed products and inner actions of Hopf algebras, Trans. Amer. Math. Soc. 298 (1986), 671–711.10.1090/S0002-9947-1986-0860387-XSearch in Google Scholar

[5] Brzeziński, T.—Majid, S.: Coalgebra bundles, Comm. Math. Phys. 191 (1998), 467–492.10.1007/s002200050274Search in Google Scholar

[6] Brzeziński, T.: On modules associated to coalgebra Galois extensions, J. Algebra 215 (1999), 290–317.10.1006/jabr.1998.7738Search in Google Scholar

[7] Brzeziński, T.: Hopf modules and the fundamental theorem for Hopf (co)quasigroups, Int. Electron. J. Algebra 8 (2010), 114–128.Search in Google Scholar

[8] Bruck, R. H.: Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245–354.10.1090/S0002-9947-1946-0017288-3Search in Google Scholar

[9] Doi, Y.—Takeuchi, M.: Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), 801–817.10.1080/00927878608823337Search in Google Scholar

[10] Fernández Vilaboa, J. M.—Villanueva Novoa, E.: A characterization of the cleft comodule triples, Comm. Algebra 16 (1988), 613–622.10.1080/00927878808823589Search in Google Scholar

[11] Kassel, C.: Quantum Groups. Graduate Texts in Math. 155, Springer-Verlag, New York, 1995.10.1007/978-1-4612-0783-2Search in Google Scholar

[12] Kreimer, H. F.—Takeuchi, M.: Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30 (1981), 675–691.10.1512/iumj.1981.30.30052Search in Google Scholar

[13] Klim, J.—Majid, S.: Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323 (2010), 3067–3110.10.1016/j.jalgebra.2010.03.011Search in Google Scholar

[14] Pérez-Izquierdo, J. M.—Shestakov, I. P.: An envelope for Malcev algebras, J. Algebra 272 (2004), 379–393.10.1016/S0021-8693(03)00389-2Search in Google Scholar

[15] Pérez-Izquierdo, J. M.: Algebras, hyperalgebras, nonassociative bialgebras and loops, Adv. Math. 208 (2007), 834–876.10.1016/j.aim.2006.04.001Search in Google Scholar

[16] Shestakov, I. P.—Zhelyabin, V. N.: The Chevalley and Costant theorems for Mal’tsev algebras, Algebra Logic 46 (2007), 303–317.10.1007/s10469-007-0031-1Search in Google Scholar

[17] Villanueva Novoa, E.—López López, M. P.: The antipode and the (co)invariants of a finite Hopf (co)quasigroup, Appl. Categ. Structures 21 (2013), 237–247.10.1007/s10485-011-9260-5Search in Google Scholar

Received: 2016-1-13
Accepted: 2016-12-8
Published Online: 2018-3-31
Published in Print: 2018-4-25

© 2018 Mathematical Institute Slovak Academy of Sciences

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0105/html
Scroll to top button