Startseite On lattices of z-ideals of function rings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On lattices of z-ideals of function rings

  • Themba Dube EMAIL logo und Oghenetega Ighedo
Veröffentlicht/Copyright: 31. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An ideal I of a ring A is a z-ideal if whenever a, bA belong to the same maximal ideals of A and aI, then bI as well. On the other hand, an ideal J of A is a d-ideal if Ann2(a) ⊆ J for every aJ. It is known that the lattices Z(L) and D(L) of the ring 𝓡L of continuous real-valued functions on a frame L, consisting of z-ideals and d-ideals of 𝓡L, respectively, are coherent frames. In this paper we characterize, in terms of the frame-theoretic properties of L (and, in some cases, the algebraic properties of the ring 𝓡L), those L for which Z(L) and D(L) satisfy the various regularity conditions on algebraic frames introduced by Martínez and Zenk [20]. Every frame homomorphism h : LM induces a coherent map Z(h) : Z(L) → Z(M). Conditions are given of when this map is closed, or weakly closed in the sense Martínez [19]. The case of openness of this map was discussed in [11]. We also prove that, as in the case of the ring C(X), the sum of two z-ideals of 𝓡L is a z-ideal.


This work was supported by the National Research Foundation of South Africa, Grant No. 93514.



(Communicated by Constantin Tsinakis )


Acknowledgement

We thank the referee most heartily for comments that have improved the paper. We express a special word of thanks for drawing our attention to references [7] and [8].

References

[1] Aliabad, A. R.—Azarpanah, F.—Paiman, M.: z-Ideals and z°-ideals in the factor rings of C(X), Bull. Iran. Math. Soc. 36 (2010), 211–226.Suche in Google Scholar

[2] Ball, R. N.—Walters-Wayland, J.: C- and C*-quotients in pointfree topology, Dissert. Math. (Rozprawy Mat.), Vol. 412 (2002), 62pp.10.4064/dm412-0-1Suche in Google Scholar

[3] Banaschewski, B.: The Real Numbers in Pointfree Topology. Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra, 1997.Suche in Google Scholar

[4] Banaschewski, B.—Dube, T.—Gilmour, C.—Walters-Wayland, J.: Oz in pointfree topology, Quaest. Math. 32 (2009), 215–227.10.2989/QM.2009.32.2.4.797Suche in Google Scholar

[5] Banaschewski, B.—Gilmour, C.: Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin. 37 (1996), 579–589.Suche in Google Scholar

[6] Banaschewski, B.—Gilmour, C.: Realcompactness and the cozero part of a frame, Appl. Categ. Struct. 9 (2001), 395–417.10.1023/A:1011225712426Suche in Google Scholar

[7] Bhattacharjee, P.: Two spaces of minimal primes, J. Algebra Appl. 11 (2012), 1250014, 18 pp.10.1142/S0219498811005373Suche in Google Scholar

[8] Bhattacharjee, P.—McGovern, W. Wm.: When Min(A)-1 is Hausdorff, Comm. Algebra 41 (2013), 99–108.10.1080/00927872.2011.617228Suche in Google Scholar

[9] Dube, T.—Ighedo, O.: Comments regarding d-ideals of certain f-rings, J. Algebra Appl. 12 (2013), 1350008 (16 pages).10.1142/S0219498813500084Suche in Google Scholar

[10] Dube, T.—Ighedo, O.: On z-ideals of pointfree function rings, Bull. Iran. Math. Soc. 40 (2014), 655–673.Suche in Google Scholar

[11] Dube, T.—Ighedo, O.: Two functors induced by certain ideals of function rings, Appl. Categ. Struct. 22 (2014), 663–681.10.1007/s10485-013-9320-0Suche in Google Scholar

[12] Dube, T.—Naidoo, I.: When lifted frame homomorphisms are closed, Topology Appl. 159 (2012), 3049–3058.10.1016/j.topol.2012.05.017Suche in Google Scholar

[13] Dube, T.—Nsonde Nsayi, J.: When certain prime ideals in rings of continuous functions are minimal or maximal, Topology Appl. 192 (2015), 98–112.10.1016/j.topol.2015.05.073Suche in Google Scholar

[14] Gillman, L.—Jerison, M.: Rings of Continuous Functions, Van Nostrand, Princeton, 1960.10.1007/978-1-4615-7819-2Suche in Google Scholar

[15] Ighedo, O.: Concerning Ideals of Pointfree Function Rings, Ph.D. thesis, Univ. South Africa, 2014.Suche in Google Scholar

[16] Knox, M. L.—Levy, R.—McGovern, W. Wm.—Shapiro, J.: Generalizations of complemented rings with applications to rings of functions, J. Algebra Appl. 8 (2009), 17–40.10.1142/S0219498809003138Suche in Google Scholar

[17] Johnstone, P. T.: Stone Spaces, Cambridge University Press, Cambridge, 1982.Suche in Google Scholar

[18] Madden, J.—Vermeer, J.: Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. 99 (1986), 473–480.10.1017/S0305004100064410Suche in Google Scholar

[19] Martínez, J.: Epicompletion in frames with skeletal maps, IV: *-regular frames, Appl. Categ. Struct. 20 (2012), 189–208.10.1007/s10485-009-9220-5Suche in Google Scholar

[20] Martínez, J.—Zenk, E. R.: When an algebraic frame is regular, Algebra Universalis 50 (2003), 231–257.10.1007/s00012-003-1841-1Suche in Google Scholar

[21] Martínez, J.—Zenk, E. R.: Dimension in algebraic frames, II: Applications to frames of ideals in C(X), Comment. Math. Univ. Carolin. 46 (2005), 607–636.Suche in Google Scholar

[22] Martínez, J.—Zenk, E. R.: Yosida frames, J. Pure Appl. Algebra 204 (2006), 473–492.10.1016/j.jpaa.2005.05.010Suche in Google Scholar

[23] McGovern, W. Wm.: Neat rings, J. Pure Appl. Algebra 205 (2006), 243–265.10.1016/j.jpaa.2005.07.012Suche in Google Scholar

[24] Picado, J.—Pultr, A.: Frames and Locales: Topology Without Points, Front. Math., Springer, Basel, 2012.10.1007/978-3-0348-0154-6Suche in Google Scholar

[25] Rudd, D.: On two sum theorems for ideals of C(X), Michigan Math. J. 17 (1970), 139–141.10.1307/mmj/1029000423Suche in Google Scholar

Received: 2015-9-23
Accepted: 2017-1-13
Published Online: 2018-3-31
Published in Print: 2018-4-25

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0099/html
Button zum nach oben scrollen