Home Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate
Article
Licensed
Unlicensed Requires Authentication

Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate

  • Ahmad Zireh EMAIL logo , Ebrahim Analouei Adegani and Mahmood Bidkham
Published/Copyright: March 31, 2018
Become an author with De Gruyter Brill

Abstract

In this paper, we use the Faber polynomial expansion to find upper bounds for |an| (n ≥ 3) coefficients of functions belong to classes HqΣ(λ,h),STqΣ(α,h) andMqΣ(α,h) which are defined by quasi-subordinations in the open unit disk 𝕌. Further, we generalize some of the previously published results.


This work was supported by Shahrood University of Technology.



Communicated by Stanisława Kanas


Acknowledgement

The authors wish to sincerely thank the referee, for the careful reading of the paper and for the helpful suggestions and comments.

References

[1] Airault, H.—Bouali, A.: Differential calculus on the Faber polynomials, Bull. Sci. Math. 130 (2006), 179–222.10.1016/j.bulsci.2005.10.002Search in Google Scholar

[2] Airault, H.—Ren, J.: An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), 343–367.10.1016/S0007-4497(02)01115-6Search in Google Scholar

[3] Airault, H.—Neretin, Y. A.: On the action of Virasoro algebra on the space of univalent functions, Bull. Sci. Math. 132 (2008), 27–39.10.1016/j.bulsci.2007.05.001Search in Google Scholar

[4] Ali, R. M.—Lee, S. K.—Ravichandran, V.—Subramaniam, S.: Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344–351.10.1016/j.aml.2011.09.012Search in Google Scholar

[5] Altinkaya, Ş.—Yalçin, S.: Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math. Acad. Sci. Paris. 353 (2015), 1075–1080.10.1016/j.crma.2015.09.003Search in Google Scholar

[6] Brannan, D. A.—Taha, T. S.: On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math. 31 (1986), 70–77.10.1016/B978-0-08-031636-9.50012-7Search in Google Scholar

[7] Bouali, A.: Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions, Bull. Sci. Math. 130 (2006), 49–70.10.1016/j.bulsci.2005.08.002Search in Google Scholar

[8] Duren, P. L.: Univalent functions. Grundlehren Math. Wiss. 259, Springer Verlag, New York, 1983.Search in Google Scholar

[9] Faber, G.: Über polynomische Entwickelungen, Math. Ann. 57 (1903), 389–408.10.1007/BF01444293Search in Google Scholar

[10] Frasin, B. A.—Aouf, M. K.: New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573.10.1016/j.aml.2011.03.048Search in Google Scholar

[11] Goyal, S. P.—Kumar, R.: Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions, Math. Slovaca. 65 (2015), 533–544.10.1515/ms-2015-0038Search in Google Scholar

[12] Jahangiri, J. M.—Hamidi, S. G.: Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013), Article ID 190560, 4 pp.10.1155/2013/190560Search in Google Scholar

[13] Hamidi, S. G.—Halim, S. A.—Jahangiri, J. M.: Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Int. J. Math. Math. Sci. (2013), Article ID 498159, 4 pp.10.1155/2013/498159Search in Google Scholar

[14] Hamidi, S. G.—Jahangiri, J. M.: Faber polynomial coefficients of bi-subordinate functions, C. R. Math. Acad. Sci. Paris. 354 (2016), 365–370.10.1016/j.crma.2016.01.013Search in Google Scholar

[15] Kanas, S.—Kim, S.-A.—Sivasubramanian, S.: Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent function, Ann. Polon. Math. 113 (2015), 295–304.10.4064/ap113-3-6Search in Google Scholar

[16] Lewin, M.: On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.10.1090/S0002-9939-1967-0206255-1Search in Google Scholar

[17] Li, X.-F.—Wang, A.-P.: Two new subclasses of bi-univalent functions, Int. Math. Forum 7 (2012), 1495–1504.Search in Google Scholar

[18] Ma, W. C.—Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis, Tianjin, 1992. Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994, pp. 157–169.Search in Google Scholar

[19] Robertson, M. S.: Quasi-subordinate functions. In: Mathematical Essays dedicated to A. J. MacIntyre, Ohio University Press, Athens, OH, 1970, pp. 311–330.Search in Google Scholar

[20] Robertson, M. S.: Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc. 76 (1970), 1–9.10.1090/S0002-9904-1970-12356-4Search in Google Scholar

[21] Srivastava, H. M.—Mishra, A. K.—Gochhayat, P.: Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188–1192.10.1016/j.aml.2010.05.009Search in Google Scholar

[22] Srivastava, H. M.—Bansal, D.: Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242–246.10.1016/j.joems.2014.04.002Search in Google Scholar

[23] Todorov, P. G.: On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162 (1991), 268–276.10.1016/0022-247X(91)90193-4Search in Google Scholar

Received: 2016-2-17
Accepted: 2016-5-11
Published Online: 2018-3-31
Published in Print: 2018-4-25

© 2018 Mathematical Institute Slovak Academy of Sciences

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0108/html
Scroll to top button