Home Certain results on q-starlike and q-convex error functions
Article
Licensed
Unlicensed Requires Authentication

Certain results on q-starlike and q-convex error functions

  • C. Ramachandran EMAIL logo , L. Vanitha and Stanisłava Kanas
Published/Copyright: March 31, 2018
Become an author with De Gruyter Brill

Abstract

The error function occurs widely in multiple areas of mathematics, mathematical physics and natural sciences. There has been no work in this area for the past four decades. In this article, we estimate the coefficient bounds with q-difference operator for certain classes of the spirallike starlike and convex error function associated with convolution product using subordination as well as quasi-subordination. Though this concept is an untrodden path in the field of complex function theory, it will prove to be an encouraging future study for researchers on error function.

MSC 2010: Primary 30C45; 30C50

Communicated by Ján Borsík


References

[1] Abramowitz, M.—Stegun, I. A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York, 1965.10.1115/1.3625776Search in Google Scholar

[2] Ali, R. M.—Lee, S. K.—Ravichandran, V.—Supramanian, S.: The Fekete-Szegö coefficient functional for transforms of analytic funtions, Bull. Iranian Math. Soc. 35 (2009), 119–142.Search in Google Scholar

[3] Al-Kharsani, H. A.: Multiplier transformations and k-uniformly p-valent starlike functions, Gen. Math. 17 (2009), 13–22.Search in Google Scholar

[4] Alzer, H.: Error function inequalities, Adv. Comput. Math. 33 (2010), 349–379.10.1007/s10444-009-9139-2Search in Google Scholar

[5] Aral, A.—Gupta, V.—Agarwal, R. P.: Applications of q-Calculus in Operator Theory, Springer, New York, 2013.10.1007/978-1-4614-6946-9Search in Google Scholar

[6] Carlitz, L.: The inverse of the error function, Pacific J. Math. 13 (1963), 459–470.10.2140/pjm.1963.13.459Search in Google Scholar

[7] Chaudhry, M. A.—Qadir, A.—Zubair, S. M.: Generalized error functions with applications to probability and heat conduction, Int. J. Appl. Math. 9 (2002), 259–278.Search in Google Scholar

[8] Coman, D.: The radius of starlikeness for the error function, Stud. Univ. Babeş-Bolyai Math. 36 (1991), 13–16.Search in Google Scholar

[9] El-Ashwah, R.—Kanas, S.: Fekete Szegö inequalities for quasi-subordination functions classes of complex order, Kyungpook Math. J. 55(2015), 679–688.10.5666/KMJ.2015.55.3.679Search in Google Scholar

[10] Elbert, A.—Laforgia, A.: The zeros of the complementary error function, Numer. Algorithms 49 (2008), 153–157.10.1007/s11075-008-9186-7Search in Google Scholar

[11] Haji Mohd, M.—Darus, M.: Fekete-Szegö problems for quasi-subordination classes, Abstr. Appl. Anal. 2012, Article ID 192956, 14 pp.10.1155/2012/192956Search in Google Scholar

[12] Herden, G.: The role of error-functions in order to obtain relatively optimal classification. Classification and related methods of data analysis (Aachen, 1987), North-Holland, Amsterdam, 1988, pp. 105–111.Search in Google Scholar

[13] Jackson, F. H.: On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193–203.Search in Google Scholar

[14] Jackson, F. H.: On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh 46 (1908), 253–281.10.1017/S0080456800002751Search in Google Scholar

[15] Kanas, S.: Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci. 38 (2003), 2389–2400.10.1155/S0161171203302212Search in Google Scholar

[16] Kanas, S.: Subordination for domains bounded by conic sections, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 589–598.10.36045/bbms/1225893941Search in Google Scholar

[17] Kanas, S.: Norm of pre-Schwarzian derivative for the class of k-uniform convex and k-starlike functions, Appl. Math. Comput. 215 (2009), 2275–2282.10.1016/j.amc.2009.08.021Search in Google Scholar

[18] Kanas, S.—Srivastava, H. M.: Linear operators associated with k-uniform convex functions, Integral Transforms Spec. Funct. 9 (2000), 121–132.10.1080/10652460008819249Search in Google Scholar

[19] Kanas, S.—Sugawa, T., On conformal representation of the interior of an ellipse, Ann. Acad. Sci. Fenn. Math. 31 (2006), 329–348.Search in Google Scholar

[20] Kanas, S.—Wisniowska, A.: Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327–336.10.1016/S0377-0427(99)00018-7Search in Google Scholar

[21] Kanas, S.—Wisniowska, A.: Conic regions and k-starlike function, Rev. Roumaine Math. Pures Appl. 45 (2000), 647–657.Search in Google Scholar

[22] Kanas, S.—Răducanu, D.: Some subclass of analytic functions related to conic domains, Math. Slovaca 64 (2014), 1183–1196.10.2478/s12175-014-0268-9Search in Google Scholar

[23] Philip, J. R.: Numerical solution of equations of the diffusion type with diffusivity concentration-dependent, Trans. Faraday Soc. 51 (1955), 885–892.10.1039/tf9555100885Search in Google Scholar

[24] Purohit, S. D.—Raina, R. K.: Fractional q-calculus and certain subclasses of univalent analytic functions, Mathematica 55 (2013), 62–74.Search in Google Scholar

[25] Ramachandran, C.—Dhanalakshmi K.—Vanitha, L.: Fekete-Szegö inequality for certain classes of analytic functions associated with Srivastava-Attiya integral operator, Appl. Math. Sci. 9 (2015), 3357–3369.10.12988/ams.2015.54322Search in Google Scholar

[26] Ramachandran, C.—Annamalai, S.: Fekete-Szegö Coeffcient for a general class of spirallike functions in unit disk, Appl. Math. Sci. 9 (2015), 2287—2297.10.12988/ams.2015.53210Search in Google Scholar

[27] Robertson, M. S.: Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc. 76 (1970), 1–9.10.1090/S0002-9904-1970-12356-4Search in Google Scholar

[28] Sim, Y. J.—Kwon, O. S.—Cho, N. E.—Srivastava, H. M.: Some classes of analytic functions associated with conic regions, Taiwanese J. Math. 16 (2012), 387–408.10.11650/twjm/1500406547Search in Google Scholar

Received: 2015-12-30
Accepted: 2016-10-14
Published Online: 2018-3-31
Published in Print: 2018-4-25

© 2018 Mathematical Institute Slovak Academy of Sciences

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0107/html
Scroll to top button