Startseite Certain results on q-starlike and q-convex error functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Certain results on q-starlike and q-convex error functions

  • C. Ramachandran EMAIL logo , L. Vanitha und Stanisłava Kanas
Veröffentlicht/Copyright: 31. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The error function occurs widely in multiple areas of mathematics, mathematical physics and natural sciences. There has been no work in this area for the past four decades. In this article, we estimate the coefficient bounds with q-difference operator for certain classes of the spirallike starlike and convex error function associated with convolution product using subordination as well as quasi-subordination. Though this concept is an untrodden path in the field of complex function theory, it will prove to be an encouraging future study for researchers on error function.

MSC 2010: Primary 30C45; 30C50

Communicated by Ján Borsík


References

[1] Abramowitz, M.—Stegun, I. A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York, 1965.10.1115/1.3625776Suche in Google Scholar

[2] Ali, R. M.—Lee, S. K.—Ravichandran, V.—Supramanian, S.: The Fekete-Szegö coefficient functional for transforms of analytic funtions, Bull. Iranian Math. Soc. 35 (2009), 119–142.Suche in Google Scholar

[3] Al-Kharsani, H. A.: Multiplier transformations and k-uniformly p-valent starlike functions, Gen. Math. 17 (2009), 13–22.Suche in Google Scholar

[4] Alzer, H.: Error function inequalities, Adv. Comput. Math. 33 (2010), 349–379.10.1007/s10444-009-9139-2Suche in Google Scholar

[5] Aral, A.—Gupta, V.—Agarwal, R. P.: Applications of q-Calculus in Operator Theory, Springer, New York, 2013.10.1007/978-1-4614-6946-9Suche in Google Scholar

[6] Carlitz, L.: The inverse of the error function, Pacific J. Math. 13 (1963), 459–470.10.2140/pjm.1963.13.459Suche in Google Scholar

[7] Chaudhry, M. A.—Qadir, A.—Zubair, S. M.: Generalized error functions with applications to probability and heat conduction, Int. J. Appl. Math. 9 (2002), 259–278.Suche in Google Scholar

[8] Coman, D.: The radius of starlikeness for the error function, Stud. Univ. Babeş-Bolyai Math. 36 (1991), 13–16.Suche in Google Scholar

[9] El-Ashwah, R.—Kanas, S.: Fekete Szegö inequalities for quasi-subordination functions classes of complex order, Kyungpook Math. J. 55(2015), 679–688.10.5666/KMJ.2015.55.3.679Suche in Google Scholar

[10] Elbert, A.—Laforgia, A.: The zeros of the complementary error function, Numer. Algorithms 49 (2008), 153–157.10.1007/s11075-008-9186-7Suche in Google Scholar

[11] Haji Mohd, M.—Darus, M.: Fekete-Szegö problems for quasi-subordination classes, Abstr. Appl. Anal. 2012, Article ID 192956, 14 pp.10.1155/2012/192956Suche in Google Scholar

[12] Herden, G.: The role of error-functions in order to obtain relatively optimal classification. Classification and related methods of data analysis (Aachen, 1987), North-Holland, Amsterdam, 1988, pp. 105–111.Suche in Google Scholar

[13] Jackson, F. H.: On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193–203.Suche in Google Scholar

[14] Jackson, F. H.: On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh 46 (1908), 253–281.10.1017/S0080456800002751Suche in Google Scholar

[15] Kanas, S.: Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci. 38 (2003), 2389–2400.10.1155/S0161171203302212Suche in Google Scholar

[16] Kanas, S.: Subordination for domains bounded by conic sections, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 589–598.10.36045/bbms/1225893941Suche in Google Scholar

[17] Kanas, S.: Norm of pre-Schwarzian derivative for the class of k-uniform convex and k-starlike functions, Appl. Math. Comput. 215 (2009), 2275–2282.10.1016/j.amc.2009.08.021Suche in Google Scholar

[18] Kanas, S.—Srivastava, H. M.: Linear operators associated with k-uniform convex functions, Integral Transforms Spec. Funct. 9 (2000), 121–132.10.1080/10652460008819249Suche in Google Scholar

[19] Kanas, S.—Sugawa, T., On conformal representation of the interior of an ellipse, Ann. Acad. Sci. Fenn. Math. 31 (2006), 329–348.Suche in Google Scholar

[20] Kanas, S.—Wisniowska, A.: Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327–336.10.1016/S0377-0427(99)00018-7Suche in Google Scholar

[21] Kanas, S.—Wisniowska, A.: Conic regions and k-starlike function, Rev. Roumaine Math. Pures Appl. 45 (2000), 647–657.Suche in Google Scholar

[22] Kanas, S.—Răducanu, D.: Some subclass of analytic functions related to conic domains, Math. Slovaca 64 (2014), 1183–1196.10.2478/s12175-014-0268-9Suche in Google Scholar

[23] Philip, J. R.: Numerical solution of equations of the diffusion type with diffusivity concentration-dependent, Trans. Faraday Soc. 51 (1955), 885–892.10.1039/tf9555100885Suche in Google Scholar

[24] Purohit, S. D.—Raina, R. K.: Fractional q-calculus and certain subclasses of univalent analytic functions, Mathematica 55 (2013), 62–74.Suche in Google Scholar

[25] Ramachandran, C.—Dhanalakshmi K.—Vanitha, L.: Fekete-Szegö inequality for certain classes of analytic functions associated with Srivastava-Attiya integral operator, Appl. Math. Sci. 9 (2015), 3357–3369.10.12988/ams.2015.54322Suche in Google Scholar

[26] Ramachandran, C.—Annamalai, S.: Fekete-Szegö Coeffcient for a general class of spirallike functions in unit disk, Appl. Math. Sci. 9 (2015), 2287—2297.10.12988/ams.2015.53210Suche in Google Scholar

[27] Robertson, M. S.: Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc. 76 (1970), 1–9.10.1090/S0002-9904-1970-12356-4Suche in Google Scholar

[28] Sim, Y. J.—Kwon, O. S.—Cho, N. E.—Srivastava, H. M.: Some classes of analytic functions associated with conic regions, Taiwanese J. Math. 16 (2012), 387–408.10.11650/twjm/1500406547Suche in Google Scholar

Received: 2015-12-30
Accepted: 2016-10-14
Published Online: 2018-3-31
Published in Print: 2018-4-25

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0107/pdf?lang=de
Button zum nach oben scrollen