Abstract
This article explores the concept of artificial intelligence (AI) literacy in the context of the language industry, placing particular emphasis on recent large language models such as GPT-4. After a brief introduction in which the relevance of AI literacy in the language industry is highlighted, the article provides a concise overview of artificial neural networks and a brief history of neural network-based artificial intelligence. This is intended to lay the conceptual groundwork for the subsequent discussion of the basic principles and capabilities of large language models. Then, the article investigates in detail the concept of AI literacy, discussing the AI Literacy Framework proposed by Long/Magerko (2020) and illustrating the interface between AI literacy and the two adjacent digital literacies of professional machine translation literacy and data literacy. The article then zooms in on the practical applicability of AI technologies by discussing areas where workflows in the language industry (with a focus on the computer-assisted translation process) could be automated or optimised through large language models. The article concludes with some general reflections on the relevance of field-specific and societal AI literacy in the presence of powerful AI technologies.
Acknowledgements
I would like to thank Janiça Hackenbuchner and Andre Busch, members of the DataLitMT project, for their valuable comments and suggestions on the manuscript version of this article.
References
Anderson, Philip W. (1972): More is different: Broken symmetry and the nature of hierarchical structure of science. Science 177(4047), 393–396. https://doi.org/10.1126/science.177.4047.393.10.1126/science.177.4047.393Search in Google Scholar
Angelone, Erik (2022): Weaving adaptive expertise into translator training. In: Massey, Gary/Huertas-Barros, Elsa/Katan, David (Eds.): The human translator in the 2020s. London: Routledge, 60–73. https://doi.org/10.4324/9781003223344.10.4324/9781003223344-5Search in Google Scholar
Angelone, Erik/Ehrensberger-Dow, Maureen/Massey, Gary (2019): Introduction. In: Angelone, Erik/Ehrensberger-Dow, Maureen/Massey, Gary (Eds.): The Bloomsbury companion to language industry studies. London: Bloomsbury Academic, 1–13. http://dx.doi.org/10.5040/9781350024960.0005.10.5040/9781350024960.0005Search in Google Scholar
Bach, Stephen/Sanh, Victor/Yong, Zheng Xin/Webson, Albert/Raffel, Colin/Nayak, Nihal V./Sharma, Abheesht/Kim, Taewoon/Bari, M Saiful/Fevry, Thibault/Alyafeai, Zaid/Dey, Manan/Santilli, Andrea/Sun, Zhiqing/Ben-david, Srulik/Xu, Canwen/Chhablani, Gunjan/Wang, Han/Fries, Jason/Al-shaibani, Maged/Sharma, Shanya/Thakker, Urmish/Almubarak, Khalid/Tang, Xiangru/Radev, Dragomir/Jiang, Mike Tian-jian/Rush, Alexander (2022):PromptSource: An integrated development environment and repository for natural language prompts. In: Basile, Valerio/Kozareva, Zornitsa/Stajner, Sanja (Eds.): Proceedings of the 60th annual meeting of the Association for Computational Linguistics: System demonstrations. Association for Computational Linguistics, 93–104. http://dx.doi.org/10.18653/v1/2022.acl-demo.9.10.18653/v1/2022.acl-demo.9Search in Google Scholar
Bahdanau, Dzmitry/Cho, Kyunghyun/Bengio, Yoshua (2014/2016): Neural machine translation by jointly learning to align and translate. In: Bengio, Yoshua/LeCun, Yann (Eds.): Proceedings of the 3rd international conference on learning representations (ICLR 2015), 1–15. Published on arXiv: https://arxiv.org/abs/1409.0473 (5 June 2023).Search in Google Scholar
Benaich, Nathan/Hogarth, Ian (2022): State of AI report 2022. https://www.stateof.ai/ (22 May 2023).Search in Google Scholar
Bender, Emily M./Gebru, Timnit/McMillan-Major, Angelina/Shmitchell, Shmargaret (2021): On the dangers of stochastic parrots: Can language models be too big? In: FAccT ’21: Proceedings of the 2021 ACM conference on fairness, accountability, and transparency. Association for Computing Machinery, 610–623. https://doi.org/10.1145/3442188.3445922.10.1145/3442188.3445922Search in Google Scholar
Bengio, Yoshua/Ducharme, Réjean/Vincent, Pascal/Jauvin, Christian (2003): A neural probabilistic language model. Journal of Machine Learning Research 3, 1137–1155. http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf (7 May 2023).Search in Google Scholar
Briakou, Eleftheria/Cherry, Colin/Foster, George (2023): Searching for needles in a haystack: On the role of incidental bilingualism in PaLM’s translation capability. arXiv. https://doi.org/10.48550/arXiv.2305.10266.10.18653/v1/2023.acl-long.524Search in Google Scholar
Bringsjord, Selmer/Govindarajulu, Naveen Sundar (2022): Artificial intelligence. In: Zalta, Edward N. (Ed.): The Stanford encyclopedia of philosophy (online edition). https://plato.stanford.edu/archives/fall2022/entries/artificial-intelligence/ (24 May 2023).Search in Google Scholar
Brown,Tom/Mann, Benjamin/Ryder, Nick/Subbiah, Melanie/Kaplan, Jared D./Dhariwal, Prafulla/Neelakantan, Arvind/Shyam, Pranav/Sastry, Girish/Askell, Amanda/Agarwal, Sandhini/Herbert-Voss, Ariel/Krueger, Gretchen/Henighan, Tom/Child, Rewon/Ramesh, Aditya/Ziegler, Daniel/Wu, Jeffrey/Winter, Clemens/Hesse, Chris/Chen, Mark/Sigler, Eric/Litwin, Mateusz/Gray, Scott/Chess, Benjamin/Clark, Jack/Berner, Christopher/McCandlish, Sam/Radford, Alec/Sutskever, Ilya/Amodei, Dario(2020):Languagemodelsarefew-shot learners. In: Larochelle, Hugo/Ranzato, Marc’Aurelio/Hadsell, Raja/Balcan, Maria-Florina/Lin, Hsuan-Tien (Eds.): Advances in neural information processing systems 33 (NeurIPS 2020), 1–25. https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html (7 May 2023).Search in Google Scholar
Bubeck, Sébastien/Chandrasekaran, Varun/Eldan, Ronen/Gehrke, Johannes/Horvitz, Eric/Kamar, Ece/Lee, Peter/Lee, Yin Tat/Li, Yuanzhi/Lundberg, Scott/Nori, Harsha/Palangi, Hamid/Tulio Ribeiro, Marco/Zhang, Yi (2023): Sparks of Artificial General Intelligence: Early experiments with GPT-4. arXiv. https://doi.org/10.48550/arXiv.2303.12712.Search in Google Scholar
Carl, Michael/Schaeffer, Moritz (2019): Outline of a relevance theoretical model of machine translation post-editing. In: Li, Defeng/Lei, Victoria/Lai, Cheng, He, Yuanjian (Eds.): Researching cognitive processes of translation. Singapur: Springer, 49–67. https://doi.org/10.1007/978-981-13-1984-6_3.10.1007/978-981-13-1984-6_3Search in Google Scholar
Carmo, Félix do/Moorkens, Joss (2021): Differentiating editing, post-editing and revision. In: Koponen, Maarit/Mossop, Brian/Robert, Isabelle/Scocchera, Giovanna (Eds.): Translation revision and post-editing. Industry practices and cognitive processes. London: Routledge, 35–49. https://doi.org/10.4324/9781003096962.10.4324/9781003096962-4Search in Google Scholar
Castaño, M. Asunción/Casacuberta, Francisco/Vidal, Enrique (1997): Machine translation using neural networks and finite-state models. In: Proceedings of the 7th conference on theoretical and methodological issues in machine translation of natural languages, 160–167. https://aclanthology.org/1997.tmi-1.19/ (25 May 2023).Search in Google Scholar
Chowdhery, Aakanksha/Narang, Sharan/Devlin, Jacob/Bosma, Maarten/Mishra, Gaurav/Roberts, Adam/Barham, Paul/Chung, Hyung Won/Sutton, Charles/Gehrmann, Sebastian/Schuh, Parker/Shi, Kensen/Tsvyashchenko, Sasha/Maynez, Joshua/Rao, Abhishek/Barnes, Parker/Tay, Yi/Shazeer, Noam/Prabhakaran, Vinodkumar/Reif, Emily/Du, Nan/Hutchinson, Ben/Pope, Reiner/Bradbury, James/Austin, Jacob/Isard, Michael/Gur-Ari, Guy/Yin, Pengcheng/Duke, Toju/Levskaya, Anselm/Ghemawat, Sanjay/Dev, Sunipa/Michalewski, Henryk/Garcia, Xavier/Misra, Vedant/Robinson, Kevin/Fedus, Liam/Zhou, Denny/Ippolito, Daphne/Luan, David/Lim, Hyeontaek/Zoph, Barret/Spiridonov, Alexander/Sepassi, Ryan/Dohan, David/Agrawal, Shivani/Omernick, Mark/Dai, Andrew M./Pillai, Thanumalayan Sankaranarayana/Pellat, Marie/Lewkowycz, Aitor/Moreira, Erica/Child, Rewon/Polozov, Oleksandr/Lee, Katherine/Zhou, Zongwei/Wang, Xuezhi/Saeta, Brennan/Diaz, Mark/Firat, Orhan/Catasta, Michele/Wie, Jason/Meier-Hellstern, Kathy/Eck, Douglas/Dean, Jeffrey/Petrov, Slav/Fiedel, Noah (2022): PaLM: Scaling language models with pathways. arXiv. https://doi.org/10.48550/arXiv.2204.02311.Search in Google Scholar
Chen, Pinzhen/Guo, Zhicheng/Haddow, Barry/Heafield, Kenneth (2023): Iterative translation refinement with large language models. arXiv. https://doi.org/10.48550/arXiv.2306.03856.Search in Google Scholar
Custom.MT (2023): ChatGPT in localization part II. Custom.MT. https://www.youtube.com/watch?v=bPeGctGTHz0 (22 June 2023).Search in Google Scholar
Devlin, Jacob/Chang, Ming-Wei/Lee, Kenton/Toutanova, Kristina (2019): BERT: Pre-training of deep bidirectional transformers for language understanding. In: Burstein, Jill/Doran, Christy/Solorio, Thamar(Eds.):Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics: Human language technologies: Volume 1 (Long and short papers). Association for Computational Linguistics, 4171–4186. https://aclanthology.org/N19-1423/ (7 May 2023).Search in Google Scholar
ELIS Research (2023): European language industry survey 2023. https://elis-survey.org/ (22 May 2023).Search in Google Scholar
Eloundou, Tyna/Manning, Sam/Mishkin, Pamela/Rock, Daniel (2023): GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv. https://doi.org/10.48550/arXiv.2303.10130.Search in Google Scholar
European Parliamentary Research Service (2022): Artificial intelligence act. European Parliament. https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf (17 June 2023).Search in Google Scholar
European Parliamentary Research Service (2023): General-purpose artificial intelligence. European Parliament. https://www.europarl.europa.eu/RegData/etudes/ATAG/2023/745708/EPRS_ATA(2023)745708_EN.pdf (17 June 2023).Search in Google Scholar
Forcada, Mikel L./Ñeco, Ramón P. (1997): Recursive hetero-associative memories for translation. In: Mira, José/Moreno-Díaz, Roberto/Cabestany, Joan (Eds.): Biological and artificial computation: From neuroscience to technology. Berlin: Springer, 453–462. https://doi.org/10.1007/BFb0032504.10.1007/BFb0032504Search in Google Scholar
Fu, Jinlan/Ng, See-Kiong/Jiang, Zhengbao/Liu, Pengfei (2023): GPTScore: Evaluate as you desire. arXiv. https://doi.org/10.48550/arXiv.2302.04166.Search in Google Scholar
Gao, Yuan/Wang, Ruili/Hou, Feng (2023): How to design translation prompts for ChatGPT: An empirical study. arXiv. https://doi.org/10.48550/arXiv.2304.02182.Search in Google Scholar
Ghazvininejad, Marjan/Gonen, Hila/Zettlemoyer, Luke (2023): Dictionary-based phrase-level prompting of large language models for machine translation. arXiv. https://doi.org/10.48550/arXiv.2302.07856.Search in Google Scholar
Goel, Ashok K. (2022): Looking back, looking ahead: Symbolic versus connectionist AI. AI Magazine 42(4), 83–85. https://doi.org/10.1609/aaai.12026.10.1609/aimag.v42i4.15111Search in Google Scholar
Goodfellow, Ian/Bengio, Yoshua/Courville, Aaron (2016): Deep learning. MIT Press. https://www.deeplearningbook.org/ (26 May 2023).Search in Google Scholar
Google (2023): PaLM 2 technical report. Google AI. https://ai.google/static/documents/palm2techreport.pdf (17 May 2023).Search in Google Scholar
Gottfredson, Linda S. (1997): Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence 24(1), 13–23. https://doi.org/10.1016/S0160-2896(97)90011–8.10.1016/S0160-2896(97)90011-8Search in Google Scholar
Guerreiro, Nuno M./Alves, Duarte M./Waldendorf, Jonas/Haddow, Barry/Birch, Alexandra/Colombo, Pierre/Martins, André F. T. (2023): Hallucinations in large multilingual translation models. arXiv. https://doi.org/10.48550/arXiv.2303.16104.10.1162/tacl_a_00615Search in Google Scholar
Hackenbuchner, Janiça/Krüger, Ralph (2023): DataLitMT – Teaching data literacy in the context of machine translation literacy. In: Nurminen, Mary/Brenner, Judith/Koponen, Maarit/Latomaa, Sirkku/Mikhailov, Mikhail/Schierl, Frederike/Ranasinghe, Tharindu/Vanmassenhove, Eva/Alvarez Vidal, Sergi/Aranberri, Nora/Nunziatini, Mara/Parra Escartìn, Carla/Forcada, Mikel/Popovic, Maja/Scarton, Carolina/Moniz, Helena (Eds.): Proceedings of the 24th annual conference of the European Association for Machine Translation (EAMT 2023). European Association for Machine Translation, 285–293. https://events.tuni.fi/uploads/2023/06/a52469c0-proceedings-eamt2023.pdf (9 June 2023).Search in Google Scholar
He, Zhiwei/Liang, Tian/Jiao, Wenxiang/Zhang, Zhuosheng/Yang, Yujiu/Wang, Rui/Tu, Zhaopeng/Shi, Shuming/Wang, Xing (2023): Exploring human-like translation strategy with large language models. arXiv. https://doi.org/10.48550/arXiv.2305.04118.Search in Google Scholar
Hendy, Amr/Abdelrehim, Mohamed/Sharaf, Amr/Raunak, Vikas/Gabr, Mohamed/Matsushita, Hitokazu/Jin Kim, Young/Afify, Mohamed/Hassan Awadalla, Hany (2023): How good are GPT models at machine translation? A comprehensive evaluation. arXiv. https://doi.org/10.48550/arXiv.2302.09210.Search in Google Scholar
Hoffmann, Jordan/Borgeaud, Sebastian/Mensch, Arthur/Buchatskaya, Elena/Cai, Trevor/Rutherford, Eliza/de Las Casas, Diego/Hendricks, Lisa Anne/Welbl, Johannes/Clark, Aidan/Hennigan, Tom/Noland, Eric/Millican, Katie/van den Driessche, George/Damoc, Bogdan/Guy, Aurelia/Osindero, Simon/Simonyan, Karen/Elsen, Erich/Rae, Jack W./Vinyals, Oriol/Sifre, Laurent (2022): Training compute-optimal large language models. arXiv. https://doi.org/10.48550/arXiv.2203.15556.Search in Google Scholar
Hornik, Kurt/Stinchcombe, Maxwell/White, Halbert (1989): Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366. https://doi.org/10. 1016/0893-6080(89)90020–8.10.1016/0893-6080(89)90020-8Search in Google Scholar
Jedamski, Derek (2020): Advanced NLP with Python for machine learning. LinkedIn Learning online course. https://www.linkedin.com/learning/advanced-nlp-with-python-for-machine-learning/ (26 May 2023).Search in Google Scholar
Jiao, Wenxiang/Huang, Jen-tse/Wang, Wenxuan/Wang, Xing/Shi, Shuming/Tu, Zhaopeng (2023): ParroT: Translating during chat using large language models. arXiv. https://doi.org/10.48550/arXiv.2304.02426.10.18653/v1/2023.findings-emnlp.1001Search in Google Scholar
Jiao, Wenxiang/Wang, Wenxuan/Huang, Jen-tse/Wang, Xing/Tu, Zhaopeng (2023): Is ChatGPT a good translator? Yes with GPT-4 as the engine. arXiv. https://doi.org/10.48550/arXiv.2301.08745.Search in Google Scholar
Kahneman, Daniel (2011): Thinking, fast and slow. New York: McMillan.Search in Google Scholar
Kaplan, Jared/McCandlish, Sam/Henighan, Tom/Brown, Tom B./Chess, Benjamin/Child, Rewon/Gray, Scott/Radford, Alec/Wu, Jeffrey/Amodei, Dario (2020): Scaling laws for neural language models. arXiv. https://doi.org/10.48550/arXiv.2001.08361.Search in Google Scholar
Karpathy, Andrej (2023): The hottest new programming language is English. Twitter. https://twitter.com/karpathy/status/1617979122625712128 (7 May 2023).Search in Google Scholar
Kinsley, Harrison/Kukiela, Daniel (2020): Neural networks from scratch in Python. https://nnfs.io/ (7 May 2023).Search in Google Scholar
Kocmi, Tom/Federmann, Christian (2023): Large language models are state-of-the-art evaluators of translation quality. In: Nurminen, Mary/Brenner, Judith/Koponen, Maarit/Latomaa, Sirkku/Mikhailov, Mikhail/Schierl, Frederike/Ranasinghe, Tharindu/Vanmassenhove, Eva/Alvarez Vidal, Sergi/Aranberri, Nora/Nunziatini, Mara/Parra Escartìn, Carla/Forcada, Mikel/Popovic, Maja/Scarton, Carolina/Moniz, Helena (Eds.): Proceedings of the 24th annual conference of the European Association for Machine Translation (EAMT 2023). European Association for Machine Translation, 193–203. https://events.tuni.fi/uploads/2023/06/a52469c0-proceedings-eamt2023.pdf (19 June 2023).Search in Google Scholar
Koehn, Philipp (2020): Neural machine translation. Cambridge: University Press.10.1017/9781108608480Search in Google Scholar
Kojima, Takeshi/Gu, Shixiang Shane/Reid, Machel/Matsuo, Yutaka/Iwasaka, Yusuke (2022): Large language models are zero-shot reasoners. arXiv. https://doi.org/10.48550/arXiv.2205.11916.Search in Google Scholar
Konishi, Yoko (2015): What is needed for AI literacy? Priorities for the Japanese economy in 2016. Research Institute of Economy, Trade and Industry. https://www.rieti.go.jp/en/columns/s16_0014.html (14 June 2023).Search in Google Scholar
Krizhevsky, Alex/Sutskever, Ilya/Hinton, Geoffrey E. (2012): ImageNet classification with deep convolutional neural networks. In: Pereira, Fernando/Burges, Christopher J./Bottou, Leon/Weinberger, Kilian Q. (Eds.): Advances in neural information processing systems 25 (NIPS 2012), 1–9. https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html (25 May 2023).Search in Google Scholar
Krüger, Ralph (2018): Technologieinduzierte Verschiebungen in der Tektonik der Translationskompetenz. trans-kom 11(1), 104–137. http://www.trans-kom.eu/bd11nr01/trans-kom_11_01_06_Krueger_Tektonik.20180712.pdf (9 June 2023).Search in Google Scholar
Krüger, Ralph (2022a): Some translation studies informed suggestions for further balancing methodologies for machine translation quality evaluation. Translation Spaces 11(2), 213–233. https://doi.org/10.1075/ts.21026.kru.10.1075/ts.21026.kruSearch in Google Scholar
Krüger, Ralph (2022b): Integrating professional machine translation literacy and data literacy. Lebende Sprachen 67(2), 247–282. https://doi.org/10.1515/les-2022–1022.10.1515/les-2022-1022Search in Google Scholar
Krüger, Ralph/Hackenbuchner, Janiça (2022): Outline of a didactic framework for combined data literacy and machine translation literacy teaching. Current Trends in Translation Teaching and Learning E 2022, 375–432. https://doi.org/10.51287/cttl202211.10.51287/cttl202211Search in Google Scholar
Laupichler, Matthias Carl/Aster, Alexandra/Schirch, Jana/Raupach, Tobias (2022): Artificial intelligence literacy in higher and adult education: A scoping literature review. Computers and Education: Artificial Intelligence 3, 1–15. https://doi.org/10.1016/j.caeai.2022.100101.10.1016/j.caeai.2022.100101Search in Google Scholar
LeCun, Yann/Bengio, Yoshua/Hinton, Geoffrey (2015): Deep learning. Nature 521, 436–444. https://doi.org/10.1038/nature14539.10.1038/nature14539Search in Google Scholar
Lewis, Mike/Liu, Yinhan/Goyal, Naman/Ghazvininejad, Marjan/Mohamed, Abdelrahman/Levy, Omer/Stoyanov, Veselin/Zettlemoyer, Luke (2020): BART: Denoising sequence-to-sequence pre-training for natural language generation, translation and comprehension. In: Jurafsky, Dan/Chai, Joyce/Schluter, Natalie/Tetreault, Joel (Eds.): Proceedings of the 58th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 7871–7880. http://dx.doi.org/10.18653/v1/2020.acl-main.703.10.18653/v1/2020.acl-main.703Search in Google Scholar
Liu, Pengfei/Yuan, Weizhe/Fu, Jinlan/Jiang, Zhengbao/Hayashi, Hiroaki/Neubig, Graham (2021): Pre-train, prompt, and predict: A systematic survey of prompt methods in natural language processing. ACM Computing Surveys 55(9), 1–35. https://doi.org/10.1145/3560815.10.1145/3560815Search in Google Scholar
Liu, Nelson F./Lin, Kevin/Hewitt, John/Paranjape, Ashwin/Bevilacqua, Michele/Petroni, Fabio/Liang, Percy (2023): Lost in the middle: How language models use long contexts. arXiv. https://doi.org/10.48550/arXiv.2307.03172.Search in Google Scholar
Long, Duri/Magerko, Brian (2020): What is AI literacy? Competencies and design considerations. In: Bernhaupt, Regina/Mueller, Florian/Verweij, David/Andres, Josh (Eds.): CHI '20: Proceedings of the 2020 CHI conference on human factors in computing systems. Association for Computing Machinery, 1–16. https://doi.org/10.1145/3313831.3376727.10.1145/3313831.3376727Search in Google Scholar
Lu, Qinghua/Zhu, Liming/Xu, Xiwei/Xing, Zhenchang/Whittle, Jon (2023): Towards responsible AI in the era of ChatGPT: A reference architecture for designing foundation model-based AI systems. arXiv. https://doi.org/10.48550/arXiv.2304.11090.Search in Google Scholar
Lu, Qingyu/Qiu, Baopu/Ding, Liang/Xie, Liping/Tao, Dacheng (2023): Error analysis prompting enables human-like translation evaluation in large language models: A case study on ChatGPT. arXiv. https://doi.org/10.48550/arXiv.2303.13809.10.20944/preprints202303.0255.v1Search in Google Scholar
Luong, Minh-Thang/Manning, Christopher (2015): Stanford neural machine translation systems for spoken language domains. In: Federico, Marcello/Stüker, Sebastian/Niehues, Jan (Eds.): Proceedings of the 12th international workshop on spoken language translation: Evaluation campaign, 76–79. https://aclanthology.org/2015.iwslt-evaluation.11 (25 May 2023).Search in Google Scholar
Markauskaite, Lina/Marrone, Rebecca/Poquet, Oleksandra/Knight, Simon/Martinez-Maldonado, Roberto/Howard, Sarah/Tondeur, Jo/De Laat, Maarten/Buckingham Shum, Simon/Gasevic, Dragan/Siemens, George (2022): Rethinking the entwinement between artificial intelligence and human learning: What capabilities do learners need for a world with AI? Computers and Education: Artificial Intelligence 3, 1–16. https://doi.org/10.1016/j.caeai.2022.100056.10.1016/j.caeai.2022.100056Search in Google Scholar
Maslej, Nestor/Fattorini, Loredana/Brynjolfsson, Erik/Etchemendy, John/Ligett, Katrina/Lyons, Terah/Manyika, James/Ngo, Helen/Niebles, Juan Carlos/Parli, Vanessa/Shoham, Yoav/Wald, Russell/Clark, Jack/Perrault, Raymond (2023): The AI index 2023 annual report. AI Index Steering Committee, Institute for Human-Centered AI, Stanford University. https://aiindex.stanford.edu/report/ (6 May 2023).Search in Google Scholar
McCarthy, John/Minsky, Marvin L./Rochester, Nathaniel/Shannon, Claude E. (1955): A proposal for the Dartmouth summer research project on artificial intelligence. http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf (22 May 2023).Search in Google Scholar
McCulloch, Warren S./Pitts, Walter (1943): A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics 5, 115–133. https://doi.org/10.1007/BF02478259.10.1007/BF02478259Search in Google Scholar
Mikolov, Tomas/Sutskever, Ilya/Chen, Kai/Corrado, Greg/Dean, Jeffrey (2013): Distributed representations of words and phrases and their compositionality. In: Burges, Christopher J./Bottou, Leon/Welling, Max/Ghahramani, Zoubin/Weinberger, Kilian Q. (Eds.): Advances in neural information processing systems 26 (NIPS 2013), 1–9. https://papers.nips.cc/paper_files/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html (5 June 2023).Search in Google Scholar
Minsky, Marvin L. (1968) (Ed.): Semantic information processing. Cambridge: MIT Press.Search in Google Scholar
Minsky, Marvin L. (1991): Logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Magazine 12(2), 34–51. https://ojs.aaai.org/aimagazine/index.php/aimagazine/issue/view/92 (22 May 2023).Search in Google Scholar
Minsky, Marvin L./Papert, Seymour A. (1969): Perceptrons: An introduction to computational geometry. Cambridge: MIT Press. https://doi.org/10.7551/mitpress/11301.001.0001.10.7551/mitpress/11301.001.0001Search in Google Scholar
Moorkens, Joss (2022): Ethics and machine translation. In: Kenny, Dorothy (Ed.): Machine translation for everyone. Empowering users in the age of artificial intelligence. Berlin: Language Science Press, 121–140. https://doi.org/10.5281/zenodo.6653406.Search in Google Scholar
Moslem, Yasmin/Haque, Rejwanul/Kelleher, John D./Way, Andy (2023): Adaptive machine translation with large language models. In: Nurminen, Mary/Brenner, Judith/Koponen, Maarit/Latomaa, Sirkku/Mikhailov, Mikhail/Schierl, Frederike/Ranasinghe, Tharindu/Vanmassenhove, Eva/Alvarez Vidal, Sergi/Aranberri, Nora/Nunziatini, Mara/Parra Escartìn, Carla/Forcada, Mikel/Popovic, Maja/Scarton, Carolina/Moniz, Helena (Eds.): Proceedings of the 24th annual conference of the European Association for Machine Translation (EAMT 2023). European Association for Machine Translation, 227–237. https://events.tuni.fi/uploads/2023/06/a52469c0-proceedings-eamt2023.pdf (19 June 2023).Search in Google Scholar
Neubig, Graham/He, Zhiwei (2023): Zeno GPT-MT report. GitHub. https://github.com/zeno-ml/zeno-build/tree/main/examples/analysis_gpt_mt/report (15 July 2023).Search in Google Scholar
Ng, Davy Tsz Kit/Leung, Jac Ka Lok/Chu, Samuel Kai Wah/Qiao, Maggie Shen (2021): Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence 2, 1–11. https://doi.org/10.1016/j.caeai.2021.100041.10.1016/j.caeai.2021.100041Search in Google Scholar
Omniscien Technologies (2023): The future of language related AI for enterprises: Local agents and fine-tuned large language models (LLMs). https://docs.omniscien.com/videos/ (19 June 2023).Search in Google Scholar
OpenAI (n. d.): Models overview. OpenAI. https://platform.openai.com/docs/models/overview (19 June 2023).Search in Google Scholar
OpenAI (2020): Language distribution of GPT-3 training data. https://github.com/openai/gpt-3/blob/master/dataset_statistics/languages_by_character_count.csv (12 June 2023).Search in Google Scholar
OpenAI (2022): Introducing ChatGPT. OpenAI Blog. https://openai.com/blog/chatgpt (7 May 2023).Search in Google Scholar
OpenAI (2023): GPT-4 technical report. OpenAI. https://cdn.openai.com/papers/gpt-4.pdf (7 May 2023).Search in Google Scholar
Ouyang, Long/Wu, Jeff/Jiang, Xu/Almeida, Diogo/Wainwright, Carroll L./Mishkin, Pamela/Zhang, Chong/Agarwal, Sandhini/Slama, Katarina/Ray, Alex/Schulman, John/Hilton, Jacob/Kelton, Fraser/Miller, Luke/Simens, Maddie/Askell, Amanda/Welinder, Peter/Christiano, Paul/Leike, Jan/Lowe, Ryan (2022): Training language models to follow instructions with human feedback. OpenAI. https://cdn.openai.com/papers/Training_language_models_to_follow_instructions_with_human_feedback.pdf (7 May 2023).Search in Google Scholar
Peng, Keqin/Ding, Liang/Zhong, Qihuang/Shen, Li/Liu, Xuebo/Zhang, Min/Ouyang, Yuanxin/Tao, Dacheng (2023): Towards making the most of ChatGPT for machine translation. arXiv. https://doi.org/10.48550/arXiv.2303.13780.10.2139/ssrn.4390455Search in Google Scholar
Pérez-Ortiz, Juan Antonio/Forcada, Mikel L./Sánchez-Martinez, Felipe (2022): How neural machine translation works. In: Kenny, Dorothy (Ed.): Machine translation for everyone. Empowering users in the age of artificial intelligence. Berlin: Language Science Press, 141–164. https://doi.org/10.5281/zenodo.6653406.Search in Google Scholar
Pryzant, Reid/Iter, Dan/Li, Jerry/Lee, Yin Tat/Zhu, Chenguang/Zeng, Michael (2023): Automatic prompt optimization with “gradient descent” and beam search. arXiv. https://doi.org/10.48550/arXiv.2305.03495.10.18653/v1/2023.emnlp-main.494Search in Google Scholar
Radford, Alec/Narasimhan, Karthik/Salimans, Tim/Sutskever, Ilya (2018): Improving language understanding by generative pre-training. OpenAI. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf (7 May 2023).Search in Google Scholar
Radford, Alec/Wu, Jeffrey/Child, Rewon/Luan, David/Amodei, Dario/Sutskever, Ilya (2019): Language models are unsupervised multitask learners. OpenAI. https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf (6 May 2023).Search in Google Scholar
Raunak, Vikas/Sharaf, Amr/Awadallah, Hany Hassan/Menezes, Arul (2023): Leveraging GPT-4 for automatic translation post-editing. arXiv. https://doi.org/10.48550/arXiv.2305.14878.10.18653/v1/2023.findings-emnlp.804Search in Google Scholar
Reineke, Detlef (2023): Terminologiearbeit mit ChatGPT & Co. edition 19(1), 25–28. http://dttev.org/images/edition/ausgaben/edition-2023-1-e-version.pdf (2 June 2023).Search in Google Scholar
Ridsdale, Chantel/Rothwell, James/Smit, Mike/Ali-Hassan, Hossam/Bliemel, Michael/Irvine, Dean/Kelley, Daniel/Matwin, Stan/Wuetherick, Brad (2015): Strategies and best practices for data literacy education. Knowledge synthesis report. Dalhousie University. http://hdl.handle.net/10222/64578 (15 June 2023).Search in Google Scholar
Rosenblatt, Frank (1958): The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65(6), 386–408. https://psycnet.apa.org/doi/10.1037/h0042519.10.1037/h0042519Search in Google Scholar
Rumelhart, David E./Hinton, Geoffrey E./Williams, Ronald J. (1986): Learning representations by back-propagating errors. Nature 323, 533–536. https://doi.org/10.1038/323533a0.10.1038/323533a0Search in Google Scholar
Rumelhart, David E./McClelland, James L./PDP Research Group (1987): Parallel distributed processing. Explorations in the microstructure of cognition. Volume 1: Foundations. Cambridge: MIT Press. https://mitpress.mit.edu/9780262680530/parallel-distributed-processing/ (25 May 2023).Search in Google Scholar
Russell, Stuart/Norvig, Peter (1995/2021): Artificial intelligence: A modern approach, global edition. 4th edition. Harlow: Pearson.Search in Google Scholar
Schaeffer, Rylan/Miranda, Brando/Koyejo, Sanmi (2023): Are emergent abilities of large language models a mirage? arXiv. https://doi.org/10.48550/arXiv.2304.15004.Search in Google Scholar
Significant Gravitas (2023): Auto-GPT: An autonomous GPT-4 experiment. GitHub repository. https://github.com/Significant-Gravitas/Auto-GPT (12 June 2023).Search in Google Scholar
Skansi, Sandro (2018): Introduction to deep learning. From logical calculus to artificial intelligence. Cham: Springer. https://doi.org/10.1007/978-3-319-73004-2.10.1007/978-3-319-73004-2Search in Google Scholar
Slator (2022): Slator machine translation expert-in-the-loop report. Slator. https://slator.com/machine-translation-expert-in-the-loop-report/ (22 June 2023).Search in Google Scholar
SmartCat (2023): What AI, automation, and ChatGPT really mean for localization. SmartCat. https://www.smartcat.com/ai-chatgpt-automation-translation-whitepaper/ (23 June 2023).Search in Google Scholar
Stasimioti, Maria (2023): Here are 30 new jobs language industry CEOs expect to hire for in the AI age. Slator. https://slator.com/30-new-jobs-language-industry-ceos-expect-to-hire-ai-age/ (12 June 2023).Search in Google Scholar
Stonier, Tom (1992): Beyond information: The natural history of intelligence. London: Springer, 107–133. https://doi.org/10.1007/978-1-4471-1835-0.10.1007/978-1-4471-1835-0_6Search in Google Scholar
Toral, Antonio (2019): Post-editese: An exacerbated translationese. In: Forcada, Mikel/Way, Andy/Haddow, Barry/Sennrich, Rico (Eds.): Proceedings of machine translation summit XVII: Research track. European Association for Machine Translation, 273–281. https://aclanthology.org/W19-6627/ (9 June 2023).Search in Google Scholar
Turing, Alan M. (1950): Computing machinery and intelligence. Mind 59(236), 433–460. https://doi.org/10.1093/mind/LIX.236.433.10.1093/mind/LIX.236.433Search in Google Scholar
Unbabel (n. d.): Quality intelligence report. Score your translation quality, instantly. Unbabel. https://qi.unbabel.com/ (22 June 2023).Search in Google Scholar
Uszkoreit, Jakob (2017): Transformer: A novel neural network architecture for language understanding. Google AI Blog. https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html (22 May 2023).Search in Google Scholar
van der Meer, Jaap (2019): Translation technology – Past, present and future. In: Angelone, Erik/Ehrensberger-Dow, Maureen/Massey, Gary (Eds.): The Bloomsbury companion to language industry studies. London: Bloomsbury Academic, 285–310. http://dx.doi.org/10.5040/9781350024960.10.5040/9781350024960.0017Search in Google Scholar
Vaswani, Ashish/Shazeer, Noam/Parmar, Niki/Uszkoreit, Jakob/Jones, Llion/Gomez, Aidan N./Kaiser, Łukasz/Polosukhin, Łukasz (2017): Attention is all you need. In: Guyon, Isabelle/Luxburg, Ulrike von/Bengio, Samy/Wallach, Hanna M./Fergus, Rob/Vishwanathan, S. V. N./Garnett, Roman (Eds.): Advances in neural information processing systems 30 (NIPS 2017), 1–11. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (06 May 2022).Search in Google Scholar
Vilar, David/Freitag, Markus/Cherry, Colin/Luo, Jiaming/Ratnakar, Viresh/Foster, George (2022): Prompting PaLM for translation: Assessing strategies and performance. arXiv. https://doi.org/10.48550/arXiv.2211.09102.10.18653/v1/2023.acl-long.859Search in Google Scholar
Walker Rettberg, Jill (2022): ChatGPT is multilingual but monocultural, and it’s learning your values. jill/txt blog. https://jilltxt.net/right-now-chatgpt-is-multilingual-but-monocultural-but-its-learning-your-values/ (12 June 2023).Search in Google Scholar
Wang, Longyue/Lyu, Chenyang/Ji, Tianbo/Zhang, Zhirui/Yu, Dian/Shi, Shuming/Tu, Zhaopeng (2023): Document-level machine translation with large language models. arXiv. https://doi.org/10.48550/arXiv.2304.02210.10.18653/v1/2023.emnlp-main.1036Search in Google Scholar
Way, Andy/Forcada, Mikel L. (2018): Editors’ foreword to the invited issue on SMT and NMT. Machine Translation 32(3), 191–194. https://doi.org/10.1007/s10590-018-9222-x.10.1007/s10590-018-9222-xSearch in Google Scholar
Wei, Jason/Tay, Yi/Bommasani, Rishi/Raffel, Colin/Zoph, Barret/Borgeaud, Sebastian/Yogatama, Dani/Bosma, Maarten/Zhou, Denny/Metzler, Donald/Chi, Ed H./Hashimoto, Tatsunori/Vinyals, Oriol/Liang, Percy/Dean, Jeff/Fedus, William (2022): Emergent abilities of large language models. arXiv. https://arxiv.org/abs/2206.07682 (2 June 2023).Search in Google Scholar
Wei, Jason/Wang, Xuezhi/Schuurmans, Dale/Bosma, Maarten/Ichter, Brian/Xia, Fei/Chi, Ed/Le, Quoc/Zhou, Denny (2023): Chain-of-thought prompting elicits reasoning in large language models. arXiv. https://doi.org/10.48550/arXiv.2201.11903.Search in Google Scholar
Wolfram, Stephen (2023): How ChatGPT changes the future of programming. Interview of Lex Fridman with Stephen Wolfram. Lex Clips. https://www.youtube.com/watch?v=e-QPQpEI4WM&t=09m42s (12 June 2023).Search in Google Scholar
Wyndham, Anna (2023): How many language service providers have piloted ChatGPT in workflows? Slator. https://slator.com/how-many-language-service-providers-have-piloted-chatgpt-workflows/ (5 June 2023).Search in Google Scholar
Yan, Da/Wang, Junyue (2022): Teaching data science to undergraduate translation trainees: Pilot evaluation of a task-based course. Frontiers in Psychology 13, 1–18. https://doi.org/10.3389/fpsyg.2022.939689.10.3389/fpsyg.2022.939689Search in Google Scholar
Zhang, Biao/Haddow, Barry/Birch, Alexandra (2023): Prompting large language model for machine translation: A case study. arXiv. https://doi.org/10.48550/arXiv.2301.07069.Search in Google Scholar
Zhao, Wayne Xin/Zhou, Kun/Li, Junyi/Tang, Tianyi/Wang, Xiaolei/Hou, Yupeng/Min, Yingqian/Zhang, Beichen/Zhang, Junjie/Dong, Zican/Du, Yifan/Yang, Chen/Chen, Yushuo/Chen, Zhipeng/Jiang, Jinhao/Ren, Ruiyang/Li, Yifan/Tang, Xinyu/Liu, Zikang/Liu, Peiyu/Nie, Jian-Yun/Wen, Ji-Rong (2023): A survey of large language models. arXiv. https://doi.org/10.48550/arXiv.2303.18223.Search in Google Scholar
Zhou, Yongchao/Muresanu, Andrei Ioan/Han, Ziwen/Paster, Keiran/Pitis, Silviu/Chan, Harris/Ba, Jimmy (2023): Large language models are human-level prompt engineers. arXiv. https://doi.org/10.48550/arXiv.2211.01910 (12 June 2023).Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Frontmatter
- Hektik pur: zu den unflektierten nachgestellten Adjektiven im Deutschen und zu deren Wiedergabe im Italienischen
- Cognitive and pragmatic features of Anglicisms in Kazakh media text
- The portrayal of women in Jordanian proverbial expressions: A thematic analysis
- Direktionalität im Konferenzdolmetschen: eine terminologische Vorbereitungsmethode für die Sprachrichtung A-B
- Las asimetrías entre los procesos penales español y alemán y cómo abordarlos mediante una traducción transparente basada en el derecho comparado
- La diversidad terminológica dentro del mismo ordenamiento jurídico como problema de traducción: el subdominio jurídico de las parejas de hecho en España
- Maschinelle, posteditierte und menschliche Übersetzung publizistischer und populärwissenschaftlicher Texte aus dem Slowakischen ins Deutsche
- Artificial intelligence literacy for the language industry – with particular emphasis on recent large language models such as GPT-4
- Rezensionen
- Cognola, Federica/Moroni, Manuela Caterina (2022): Le particelle modali del tedesco. Caratteristiche formali, proprietà pragmatiche ed equivalenti funzionali in italiano. Roma: Carocci, 240 S., ISBN 9788843094509.
- Evrin, Feyza/Meyer, Bernd (2023): Sprachmittlung in öffentlichen Einrichtungen. Handreichungen für die Praxis. Berlin: Peter Lang. 172 S., ISBN 9783631890035.
Articles in the same Issue
- Frontmatter
- Frontmatter
- Hektik pur: zu den unflektierten nachgestellten Adjektiven im Deutschen und zu deren Wiedergabe im Italienischen
- Cognitive and pragmatic features of Anglicisms in Kazakh media text
- The portrayal of women in Jordanian proverbial expressions: A thematic analysis
- Direktionalität im Konferenzdolmetschen: eine terminologische Vorbereitungsmethode für die Sprachrichtung A-B
- Las asimetrías entre los procesos penales español y alemán y cómo abordarlos mediante una traducción transparente basada en el derecho comparado
- La diversidad terminológica dentro del mismo ordenamiento jurídico como problema de traducción: el subdominio jurídico de las parejas de hecho en España
- Maschinelle, posteditierte und menschliche Übersetzung publizistischer und populärwissenschaftlicher Texte aus dem Slowakischen ins Deutsche
- Artificial intelligence literacy for the language industry – with particular emphasis on recent large language models such as GPT-4
- Rezensionen
- Cognola, Federica/Moroni, Manuela Caterina (2022): Le particelle modali del tedesco. Caratteristiche formali, proprietà pragmatiche ed equivalenti funzionali in italiano. Roma: Carocci, 240 S., ISBN 9788843094509.
- Evrin, Feyza/Meyer, Bernd (2023): Sprachmittlung in öffentlichen Einrichtungen. Handreichungen für die Praxis. Berlin: Peter Lang. 172 S., ISBN 9783631890035.