Startseite Medizin Application of imaging modalities for evaluating neuroblastoma
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of imaging modalities for evaluating neuroblastoma

  • Wencao Liu , Jun Zheng und Qin Li EMAIL logo
Veröffentlicht/Copyright: 8. Juni 2013

Abstract

Neuroblastoma are the most common extracranial solid tumor of childhood. It is a malignancy derived from embryonic neural crest cells of the peripheral sympathetic nervous system that demonstrates remarkably heterogenous clinical and biological behavior ranging from spontaneous regression to inexorable progression with fatal outcomes. Various imaging modalities, including plain radiograph, ultrasound, computed tomography (CT), magnetic resonance imaging, bone scintigraphy, metaiodobenzylguanidine scintigraphy, and positron emission tomography/CT have been used to diagnose primary and metastatic neuroblastoma. In this article, we review the application of various imaging modalities to better define and recognize their role in the diagnosis and follow-up of neuroblastoma.

Keywords: CT; MIBG; MRI; neuroblastoma; PET/CT; US

Corresponding author: Qin Li, Oncology Department, Beijing Friendship Hospital of Capital Medical University, Beijing, China, E-mail:

References

1. Ley S, Ley-Zaporozhan J, Gunther P, Deubzer HE, Witt O, et al. Neuroblastoma imaging. Rofo 2011;183:217–25.10.1055/s-0029-1245903Suche in Google Scholar

2. David R, Lamki N, Fan S, Singleton EB, Eftekhari F, et al. The many faces of neuroblastoma. Radiographics 1989;9:859–82.10.1148/radiographics.9.5.2678295Suche in Google Scholar

3. Matthay KK, Yanik G, Messina J, Quach A, Huberty J, et al. Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol 2007;25: 1054–60.10.1200/JCO.2006.09.3484Suche in Google Scholar

4. Boubaker A, Bischof Delaloye A. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging 2008;52:388–402.Suche in Google Scholar

5. von Schweinitz D, Hero B, Berthold F. The impact of surgical radicality on outcome in childhood neuroblastoma. Eur J Pediatr Surg 2002;12:402–9.10.1055/s-2002-36952Suche in Google Scholar

6. Meyer JS, Harty MP, Khademian Z. Imaging of neuroblastoma and Wilms’ tumor. Magn Reson Imaging Clin N Am 2002;10:275–302.10.1016/S1064-9689(01)00010-1Suche in Google Scholar

7. Hiorns MP, Owens CM. Radiology of neuroblastoma in children. Eur Radiol 2001;11:2071–81.10.1007/s003300100931Suche in Google Scholar PubMed

8. Ferraro EM, Fakhry J, Aruny JE, Bracero LA. Prenatal adrenal neuroblastoma. Case report with review of the literature. J Ultrasound Med 1988;7:275–8.10.7863/jum.1988.7.5.275Suche in Google Scholar PubMed

9. Deeg KH, Bettendorf U, Hofmann V. Differential diagnosis of neonatal adrenal haemorrhage and congenital neuroblastoma by colour coded Doppler sonography and power Doppler sonography. Eur J Pediatr 1998;157:294–7.10.1007/s004310050814Suche in Google Scholar PubMed

10. Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics 2002;22:911–34.10.1148/radiographics.22.4.g02jl15911Suche in Google Scholar PubMed

11. Abramson SJ. Adrenal neoplasms in children. Radiol Clin N Am 1997;35:1415–53.10.1016/S0033-8389(22)00733-3Suche in Google Scholar

12. Cody DD, Moxley DM, Krugh KT, O’Daniel JC, Wagner LK, et al. Strategies for formulating appropriate MDCT techniques when imaging the chest, abdomen, and pelvis in pediatric patients. AJR Am J Roentgenol 2004;182:849–59.10.2214/ajr.182.4.1820849Suche in Google Scholar PubMed

13. Siegel MJ, Jaju A. MR imaging of neuroblastic masses. Magn Reson Imaging Clin N Am 2008;16:499–513, vi.10.1016/j.mric.2008.04.007Suche in Google Scholar PubMed

14. Siegel MJ, Ishwaran H, Fletcher BD, Meyer JS, Hoffer FA, et al. Staging of neuroblastoma at imaging: report of the radiology diagnostic oncology group. Radiology 2002;223:168–75.10.1148/radiol.2231010841Suche in Google Scholar PubMed

15. Goo HW, Choi SH, Ghim T, Moon HN, Seo JJ. Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 2005;35:766–73.10.1007/s00247-005-1459-xSuche in Google Scholar PubMed

16. Laffan EE, O’Connor R, Ryan SP, Donoghue VB. Whole-body magnetic resonance imaging: a useful additional sequence in paediatric imaging. Pediatr Radiol 2004;34:472–80.10.1007/s00247-004-1184-xSuche in Google Scholar PubMed

17. Kellenberger CJ, Miller SF, Khan M, Gilday DL, Weitzman S, et al. Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 2004;14:1829–41.10.1007/s00330-004-2432-zSuche in Google Scholar PubMed

18. Goo HW. Whole-body MRI of neuroblastoma. Eur J Radiol 2010;75:306–14.10.1016/j.ejrad.2009.09.014Suche in Google Scholar PubMed

19. Gordon I, Peters AM, Gutman A, Morony S, Dicks-Mireaux C, et al. Skeletal assessment in neuroblastoma – the pitfalls of iodine-123-MIBG scans. J Nucl Med 1990;31:129–34.Suche in Google Scholar

20. Shulkin BL, Shapiro B, Hutchinson RJ. Iodine-131-metaiodobenzylguanidine and bone scintigraphy for the detection of neuroblastoma. J Nucl Med 1992;33:1735–40.Suche in Google Scholar

21. Jaques S Jr, Tobes MC, Sisson JC. Sodium dependency of uptake of norepinephrine and m-iodobenzylguanidine into cultured human pheochromocytoma cells: evidence for uptake-one. Cancer Res 1987;47:3920–8.Suche in Google Scholar

22. Pashankar FD, O’Dorisio MS, Menda Y. MIBG and somatostatin receptor analogs in children: current concepts on diagnostic and therapeutic use. J Nucl Med 2005;46(Suppl 1):55S–61S.Suche in Google Scholar

23. Shulkin BL, Shapiro B, Francis IR, Dorr R, Shen SW, et al. Primary extra-adrenal pheochromocytoma: positive I-123 MIBG imaging with negative I-131 MIBG imaging. Clin Nucl Med 1986;11:851–4.10.1097/00003072-198612000-00012Suche in Google Scholar PubMed

24. Lynn MD, Shapiro B, Sisson JC, Beierwaltes WH, Meyers LJ, et al. Pheochromocytoma and the normal adrenal medulla: improved visualization with I-123 MIBG scintigraphy. Radiology 1985;155:789–92.10.1148/radiology.155.3.4001380Suche in Google Scholar PubMed

25. Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab 2010;95:2596–606.10.1210/jc.2009-2604Suche in Google Scholar PubMed

26. Vik TA, Pfluger T, Kadota R, Castel V, Tulchinsky M, et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: results from a prospective multicenter trial. Pediatr Blood Cancer 2009;52:784–90.10.1002/pbc.21932Suche in Google Scholar PubMed

27. Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med 1989;30:481–9.Suche in Google Scholar

28. Biasotti S, Garaventa A, Villavecchia GP, Cabria M, Nantron M, et al. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol 2000;35: 153–5.10.1002/1096-911X(200008)35:2<153::AID-MPO18>3.0.CO;2-7Suche in Google Scholar

29. Fukuoka M, Taki J, Mochizuki T, Kinuya S. Comparison of diagnostic value of I-123 MIBG and high-dose I-131 MIBG scintigraphy including incremental value of SPECT/CT over planar image in patients with malignant pheochromocytoma/paraganglioma and neuroblastoma. Clin Nucl Med 2011;36:1–7.10.1097/RLU.0b013e3181feeb5eSuche in Google Scholar

30. Yang J, Codreanu I, Servaes S, Zhuang H. I-131 MIBG post-therapy scan is more sensitive than I-123 MIBG pretherapy scan in the evaluation of metastatic neuroblastoma. Nucl Med Commun 2012;33:1134–7.10.1097/MNM.0b013e3283570ffeSuche in Google Scholar

31. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, et al. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology 1996;199: 743–50.10.1148/radiology.199.3.8637999Suche in Google Scholar

32. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 2009;50:1237–43.10.2967/jnumed.108.060467Suche in Google Scholar

33. Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D, et al. (1)(2)(3)I-MIBG scintigraphy/SPECT versus (1)F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 2011;38:1648–58.10.1007/s00259-011-1843-8Suche in Google Scholar

34. Taggart DR, Han MM, Quach A, Groshen S, Ye W, et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol 2009;27: 5343–9.10.1200/JCO.2008.20.5732Suche in Google Scholar

35. Minn H, Kauhanen S, Seppanen M, Nuutila P. 18F-FDOPA: a multiple-target molecule. J Nucl Med 2009;50:1915–8.10.2967/jnumed.109.065664Suche in Google Scholar

36. Piccardo A, Lopci E, Conte M, Garaventa A, Foppiani L, et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 2012;39:57–71.10.1007/s00259-011-1938-2Suche in Google Scholar

Received: 2013-3-24
Accepted: 2013-5-14
Published Online: 2013-06-08
Published in Print: 2013-11-01

©2013 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Masthead
  2. Masthead
  3. Review article
  4. Application of imaging modalities for evaluating neuroblastoma
  5. Images in pediatric endocrinology
  6. Lingual thyroid
  7. Original articles
  8. A levothyroxine dose recommendation for the treatment of children and adolescents with autoimmune thyroiditis induced hypothyroidism
  9. Fasting glucagon-like peptide-1 in patients with overt hyperthyroidism and euthyroid congenital hypothyroidism
  10. Perinatal complications and higher risks of offspring thyroid dysfunction in early childhood of Graves’ disease mothers with euthyroidism
  11. Clinical characteristics and management of cranial diabetes insipidus in infants
  12. Desmopressin administration in children with central diabetes insipidus: a retrospective review
  13. An electronic surveillance system for monitoring the hospital presentation of nutritional vitamin D deficiency in children in Scotland
  14. Frequency and severity of ketoacidosis at onset of autoimmune type 1 diabetes over the past decade in children referred to a tertiary paediatric care centre: potential impact of a national programme highlighted
  15. Vitamin D status is associated with early markers of cardiovascular disease in prepubertal children
  16. Evaluation of bone mineral density in children with type 1 diabetes mellitus
  17. Observational study of diabetes management in type 1 diabetic school-age children during holiday versus school days
  18. Relationship of body mass index and GAD65 antibody status on β-cell secretion at diabetes onset in African-American children
  19. Serum dipeptidyl peptidase 4 activity in children with type 1 diabetes mellitus
  20. Concomitant autoantibodies in newly diagnosed diabetic children with transient celiac serology or proven celiac disease
  21. Assessment of user-friendliness of the Norditropin FlexPro for pediatric patients treated with recombinant human growth hormone: results of an open-label user survey
  22. Cognitive impairment and gray/white matter volume abnormalities in pediatric patients with Turner syndrome presenting with various karyotypes
  23. Prevalence of metabolic syndrome among urban Indian adolescents and its relation with insulin resistance (HOMA-IR)
  24. Prevalence of metabolic syndrome in obese Chilean children and association with gene variants of the leptin-melanocortin system
  25. Evaluation of serum neopterin levels and its relationship with adipokines in pediatric obesity-related nonalcoholic fatty liver disease and healthy adolescents
  26. Could GSD type I expand the spectrum of disorders with elevated plasma chitotriosidase activity?
  27. Patient reports
  28. Treatment of hyperinsulinemic hypoglycemia because of diffuse nesidioblastosis with nifedipine after surgical therapies in a newborn
  29. Successful subcutaneous glucagon use for persistent hypoglycaemia in congenital hyperinsulinism
  30. A novel atypical presentation of insulin autoimmune syndrome (Hirata’s disease) in a child
  31. Diagnosis of septo-optic dysplasia in a neonate with hypernatremia, hypoglycemia, and persistent hypothermia
  32. Speech and language delay in two children: an unusual presentation of hyperthyroidism
  33. Lissencephaly presenting with congenital hypothyroidism
  34. PHEX gene mutation in a Chinese family with six cases of X-linked hypophosphatemic rickets
  35. Primary hyperparathyroidism as an extremely rare cause of secondary myelofibrosis in childhood
  36. A family with Camurati-Engelman disease: the role of the missense p.R218C mutation in TGFbeta1 in bones and endocrine glands
  37. A case of SCNN1A splicing mutation presenting as mild systemic pseudohypoaldosteronism type 1
  38. Central precocious puberty in a girl with Prader-Willi syndrome
  39. Type 1 diabetes mellitus in a patient with homozygous sickle cell anemia
  40. Short communication
  41. No impact of obesity susceptibility loci on weight regain after a lifestyle intervention in overweight children
  42. Letter to the Editor
  43. Reliability and validity of homeostasis model assessment for insulin resistance and β-cell dysfunction in critically ill children with hyperglycemia
Heruntergeladen am 12.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jpem-2013-0117/html?lang=de
Button zum nach oben scrollen