Home All-optical simultaneous XOR-AND operation using 1-D periodic nonlinear material
Article
Licensed
Unlicensed Requires Authentication

All-optical simultaneous XOR-AND operation using 1-D periodic nonlinear material

  • Tanay Chattopadhyay ORCID logo EMAIL logo
Published/Copyright: August 16, 2021
Become an author with De Gruyter Brill

Abstract

In this paper, an all-optical XOR-AND gate operation has been proposed using one-dimensional periodic nonlinear material model. This structure consists of alternating layers of different nonlinear materials. In this design, we can obtain XOR and AND logical operation simultaneously at the reflected and transmitted port of the periodic structure. Numerical simulation has also been done using the finite-difference-time-domain (FDTD) method. The response time of this switching operation is picoseconds (ps) range order. We find low insertion loss (−3.01 dB), high contrast ratio (14.13 dB) and high extension ratio (10.93 dB) of this device. This design will be useful in future all-optical computing.


Corresponding author: Tanay Chattopadhyay, Mechanical Operation (Stage-II), Sagardighi Thermal Power Project, WBPDCL, Manigram, Murshidabad, 742237, West Bengal, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: No research funding.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Caulfield, HJ, Dolev, S. Why future supercomputing requires optics. Nat Photonics 2010;4:261–3. https://doi.org/10.1038/nphoton.2010.94.Search in Google Scholar

2. Swarnakar, S, Kumar, S, Sharma, S. Performance analysis of all-optical full-adder based on two-dimensional photonic crystals. J Comput Electron 2018;17:1124–34. https://doi.org/10.1007/s10825-018-1177-x.Search in Google Scholar

3. Kumar, S, Singh, L, Raghuwanshi, SK, Chen, N-K. Design of full-adder and full-subtractor using metal-insulator-metal plasmonic waveguides. Plasmonics 2017;12:987–97. https://doi.org/10.1007/s11468-016-0350-y.Search in Google Scholar

4. Kumar, S, Singh, L, Raghuwanshi, SK. Design of plasmonic half-adder and half-subtractor circuits employing nonlinear effect in Mach–Zehnder interferometer. J Comput Electron 2017;16:139–47. https://doi.org/10.1007/s10825-016-0927-x.Search in Google Scholar

5. Chattopadhyay, T, Gayen, DK. Optical half and full adders using the nonlinear Mach–Zehnder interferometer. J Opt 2021;50:314–21. https://doi.org/10.1007/s12596-021-00692-0.Search in Google Scholar

6. Rafiq, A, Chaudhry, SM. Design of an improved low-power and high-speed booth multiplier. Circ Syst Signal Process 2021. https://doi.org/10.1007/s00034-021-01730-9, in press.Search in Google Scholar

7. Kumar, S, Bisht, A, Singh, G, Amphawan, A. Implementation of 2-bit multiplier based on ElectroOptic effect in Mach–Zehnder interferometers. Opt Quant Electron 2020;47:3667–88.10.1007/s11082-015-0249-4Search in Google Scholar

8. Chattopadhyay, T, Sarkar, T. All-optical switching by Kerr nonlinear prism and its application to of binary-to-gray-to-binary code conversion. Opt Laser Technol 2012;44:1722–8. https://doi.org/10.1016/j.optlastec.2012.02.007.Search in Google Scholar

9. Kumar, S, Chanderakanta, Amphawan, A. Design of parity generator and checker circuit using electro-optic effect of Mach–Zehnder interferometers. Opt Commun 2016;364:195–224. https://doi.org/10.1016/j.optcom.2015.11.054.Search in Google Scholar

10. Nair, N, Kaur, S, Goyal, R. All-optical integrated parity generator and checker circuit using optical tree architecture. Curr Opt Photonics 2018;2:400–6.Search in Google Scholar

11. Kumar, S, Singh, G, Bisht, A, Amphawan, A. An optical synchronous up counter based on electro-optic effect of lithium niobate based Mach–Zehnder interferometers. Opt Quant Electron 2015;47:3613–26. https://doi.org/10.1007/s11082-015-0234-y.Search in Google Scholar

12. Pal, A, Kumar, S, Sharma, S. Design of optical decoder circuits using electro-optic effect inside Mach–Zehnder interferometers for high speed communication. Photonic Netw Commun 2018;35:79–89. https://doi.org/10.1007/s11107-017-0718-8.Search in Google Scholar

13. Kumar, S, Singh, L, Chen, N-K. All-optical bit magnitude comparator device using metal–insulator–metal plasmonic waveguide. Opt Eng 2017;56:121908. https://doi.org/10.1117/1.oe.56.12.121908.Search in Google Scholar

14. Meymand, RE, Soleymani, A, Granpayeh, N. All-optical AND, OR and XOR logic gates based on coherent perfect absorption in Graphene-based metasurface at terahertz region. Opt Commun 2019;458:124772. https://doi.org/10.1016/j.optcom.2019.124772.Search in Google Scholar

15. Parandin, F, Maimir, MR. Reconfigurable all-optical half adder and optical XOR and AND logic gates based on 2D photonic crystals. Opt Quant Electron 2020;52:1–8. https://doi.org/10.1007/s11082-019-2167-3.Search in Google Scholar

16. Sonth, MV, Srikanth, G, Agrawal, P, Permalatha, B. Basic logic gates in two dimensional photonic crystals for all-optical device design. Int J Electron Telecommun 2021;67:247–61.10.24425/ijet.2021.135972Search in Google Scholar

17. Goudarzi, K, Mir, A, Chaharmahali, I, Goudarzi, D. All-optical XOR and OR logic gates based on line and point defectsin 2-D photonic crystal. Opt Laser Technol 2016;78:139–42. https://doi.org/10.1016/j.optlastec.2015.10.013.Search in Google Scholar

18. Swarnakar, S, Rathi, S, Kumar, S. Design of all optical XOR gate based on photonic crystal ring resonator. J Opt Commun 2020;41:51–6. https://doi.org/10.1515/joc-2017-0142.Search in Google Scholar

19. Kotb, A, Guo, C. Theoretical implementation of all-optical XOR gate at 160 Gb/s using semiconductor optical amplifiers-based turbo-switched Mach-Zehnder interferometer. J Adv Opt Photonics 2018;1:263–78. https://doi.org/10.32604/jaop.2019.04960.Search in Google Scholar

20. Zhang, X, Thapa, S, Dutta, N. All-optical XOR gates based on dual semiconductor optical amplifiers. Cogent Phys 2019;6:1660495. https://doi.org/10.1080/23311940.2019.1660495.Search in Google Scholar

21. Anzabia, KS, Sharif, AH, Connelly, MJ, Rostami, A. Performance enhancement of an all-optical XOR gate using quantum-dot based reflective semiconductor optical amplifiers in a folded Mach-Zehnder interferometer. Opt Laser Technol 2021;135:106628.10.1016/j.optlastec.2020.106628Search in Google Scholar

22. Dimitriadou, E, Zoiros, KE. All-optical XOR gate using single quantum-dot SOA and optical filter. J Lightwave Technol 2013;31:3813–21. https://doi.org/10.1109/jlt.2013.2287905.Search in Google Scholar

23. Raja, A, Mukherjee, K, Roy, JN, Maji, K. Analysis of polarization encoded optical switch implementing cross polarization modulation effect in semiconductor optical amplifier. Int J Photonics Opt Technol 2019;5:1–5.Search in Google Scholar

24. Kim, JH, Jhon, YM, Byun, YT, Lee, S, Whh, DH, Kim, SH. All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photon Technol Lett 2002;14:1436–8. https://doi.org/10.1109/lpt.2002.801841.Search in Google Scholar

25. Zoiros, KE, Papadopoulos, G, Houbavlis, T, Kanellos, GT. Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer. Opt Commun 2006;258:114–34. https://doi.org/10.1016/j.optcom.2005.07.059.Search in Google Scholar

26. Samanta, S, Mukhopadhyay, S. All-optical method of developing parity generator and checker with polarization encoded light signal. J Opt 2012;41:167–72. https://doi.org/10.1007/s12596-012-0080-2.Search in Google Scholar

27. Choudhary, K, Mishra, S, Singh, S, Kumar, S. Design of all-optical OR/NAND logic gate using plasmonic metal-insulator-metal waveguide. Opt Quant Electron 2015;47:3613–26.Search in Google Scholar

28. Kumar, S, Singh, L, Chen, NK. Design of all-optical universal gates using plasmonics Mach-Zehnder interferometer for WDM applications. Plasmonics 2018;13:1277–86. https://doi.org/10.1007/s11468-017-0631-0.Search in Google Scholar

29. Kumar, S, Singh, L, Swarnakar, S. Design of one-bit magnitude comparator using nonlinear plasmonic waveguide. Plasmonics 2017;12:369–75. https://doi.org/10.1007/s11468-016-0273-7.Search in Google Scholar

30. Kumar, A, Kumar, S, Raghuwanshi, SK. Implementation of XOR/XNOR and AND logic gates by using Mach–Zehnder interferometers. Optik 2014;125:5764–7. https://doi.org/10.1016/j.ijleo.2014.07.037.Search in Google Scholar

31. Kumar, S, Kumar, A, Raghuwanshi, SK. Implementation of an optical AND gate using Mach-Zehnder interferometers. Opt Model Des III 2014;9131:913120. https://doi.org/10.1117/12.2052655.Search in Google Scholar

32. Jasim, MA, Aldalbahi, A. Design of XOR photonic gate using highly nonlinear fiber. Electronics 2019;8:215. https://doi.org/10.3390/electronics8020215.Search in Google Scholar

33. Miyoshi, Y, Ikeda, K, Tobioka, H, Inoue, T, Namiki, S, Kitayama, K-I. Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. Opt Express 2008;16:2570–7. https://doi.org/10.1364/oe.16.002570.Search in Google Scholar PubMed

34. Husko, C, Vo, TD, Corcoran, B, Li, J, Krauss, TF, Eggleton, BJ. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide. Opt Express 2011;19:20681–90. https://doi.org/10.1364/oe.19.020681.Search in Google Scholar

35. Brzozowski, L, Sargent, RH. Optical signal processing using nonlinear distributed feedback structures. J Quant Electron 2000;36:550–5. https://doi.org/10.1109/3.842096.Search in Google Scholar

36. Vella, JH, Goldsmith, JH, Browning, AT, Limberopoulous, N, Vitebskiy, H, Makri, E, et al.. Experimental realization of a reflective optical limiter. Phys Rev Appl 2016;5:064010-1-7. https://doi.org/10.1103/physrevapplied.5.064010.Search in Google Scholar

37. Valligatla, S, Chiasera, A, Varas, S, Das, P, Shivakiran Bhaktha, BN, Łukowiak, A, et al.. Optical field enhanced nonlinear absorption and optical limiting properties of 1-D dielectric photonic crystal with ZnO defect. Opt Mater 2015;50:229. https://doi.org/10.1016/j.optmat.2015.10.032.Search in Google Scholar

38. Saleh, BEA, Teich, MC. Fundamental of photonics. New York: Wiley; 1991.10.1002/0471213748Search in Google Scholar

39. Boyd, RW. Nonlinear optics, 3rd ed. San Diego, London: Academic Press © & Elsevier Inc.; 2008.Search in Google Scholar

40. Brzozowski, L, Sargent, RH. All-optical analog-to-digital converters, hardlimiters, and logic gates. J Lightwave Technol 2001;19:114–9. https://doi.org/10.1109/50.914492.Search in Google Scholar

41. Moniem, TA, Saleh, MH. Fuzzy logic membership implementation using optical hardware components. Opt Commun 2012;285:4474–82. https://doi.org/10.1016/j.optcom.2012.05.012.Search in Google Scholar

42. Murphy, TE, Hastings, JT, Smith, HI. Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides. J Lightwave Technol 2001;19:1938–42. https://doi.org/10.1109/50.971688.Search in Google Scholar

43. Ghosh, S, Keyvaninia, S, Roy, WV, Mzumoto, T, Roelkens, G, Baets, R. Adhesively bonded Ce:YIG/SOI integrated optical circulator. Opt Lett 2013;38:965–7. https://doi.org/10.1364/ol.38.000965.Search in Google Scholar

44. Wang, B, Kojima, K, Akino, TK, Parsons, K, Nishikawa, S, Yagyu, E. A low-loss integrated beam combiner based on polarization multiplexing. In: Integrated photonics research, silicon and nanophotonics 2013, paper JT3A.17, Rio Grande, Puerto Rico. Optical Society of America (OSA), USA; 2013. https://doi.org/10.1364/IPRSN.2013.JT3A.17.Search in Google Scholar

Received: 2021-06-16
Accepted: 2021-07-17
Published Online: 2021-08-16
Published in Print: 2024-04-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Amplifiers
  3. Evaluating the impact of doping concentration on the performance of in-band pumped thulium-doped fiber amplifiers
  4. Gain flattened and C/L band amplified spontaneous emission noise re-injected L-band EDFA
  5. Devices
  6. Performance signature of transceiver communication system based on the cascade uniform fiber Bragg grating devices
  7. A novel connected structure of all-optical high speed and ultra-compact photonic crystal OR logic gate
  8. All-optical simultaneous XOR-AND operation using 1-D periodic nonlinear material
  9. Implementation of frequency encoded all optical reversible logic
  10. All-optical frequency-encoded Toffoli gate
  11. Performance analysis of all optical 2 × 1 multiplexer in 2D photonic crystal structure
  12. Fibers
  13. Predication of negative dispersion for photonic crystal fiber using extreme learning machine
  14. Analysis of optical Kerr effect on effective core area and index of refraction in single-mode dispersion shifted and dispersion flattened fibers
  15. Novel add-drop filter based on serial and parallel photonic crystal ring resonators (PCRR)
  16. Integrated Optics
  17. Design and modeling of multi-operation bit-manipulator logic circuit using lithium niobate waveguides
  18. Networks
  19. Modeling and comparative analysis of all-class converged-coexistence NG-PON2 network for 5G-IoT-FTTX-services and application
  20. Efficient solution for WDM-PON with low value of BER using NRZ modulation
  21. Systems
  22. Efficient employment of VCSEL light sources in high speed dispersion compensation system
  23. Performance analysis of a hybrid FSO–FO link with smart decision making system under adverse weather conditions
  24. A review on mmWave based energy efficient RoF system for next generation mobile communication and broadband systems
  25. Fiber nonlinearity compensation using optical phase conjugation in dispersion-managed coherent transmission systems
  26. Hybrid WDM free space optical system using CSRZ and Rayleigh backscattering noise mitigation
  27. Differential coding scheme based FSO channel for optical coherent DP-16 QAM transceiver systems
  28. Performance analysis of free space optical system incorporating circular polarization shift keying and mode division multiplexing
  29. Filter bank multi-carrier review article
  30. Investigations of wavelength division multiplexing-orthogonal frequency division multiplexing (WDM-OFDM) system with 50 Gb/s optical access
  31. FSO performance analysis of a metro city in different atmospheric conditions
  32. Underwater video transmission with video enhancement using reduce hazing algorithm
  33. Theory
  34. SLM based Circular (6, 2) mapping scheme with improved SER performance for PAPR reduction in OCDM without side information
  35. Modeling and spectral analysis of high speed optical fiber communication with orthogonal frequency division multiplexing
  36. Optical SNR estimation using machine learning
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2021-0145/html
Scroll to top button