Startseite An overview on red algae bioactive compounds and their pharmaceutical applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An overview on red algae bioactive compounds and their pharmaceutical applications

  • Ejaz Aziz EMAIL logo , Riffat Batool , Muhammad Usman Khan , Abdur Rauf , Wasim Akhtar , Mojtaba Heydari , Shazia Rehman , Tasmeena Shahzad , Ayesha Malik , Seyed Hamdollah Mosavat , Sergey Plygun und Mohammad Ali Shariati EMAIL logo
Veröffentlicht/Copyright: 22. Juli 2020

Abstract

Objectives

To review red algae bioactive compounds and their pharmaceutical applications.

Content

Seaweed sources are becoming attractive to be used in health and therapeutics. Among these red algae is the largest group containing bioactive compounds utilized in cosmetic, pharmaceutical, food industry, manure and various supplements in food formula. Various significant bioactive compounds such as polysaccharides (aginate, agar, and carrageenan), lipids and polyphenols, steroids, glycosides, flavanoids, tannins, saponins, alkaloids, triterpenoids, antheraquinones and cardiac glycosides have been reported in red algae. The red algae have rich nutritional components Different polysaccharides of red algae possess the antiviral potential namely agarans, carrageenan, alginate, fucan, laminaran and naviculan. Sulfated polysaccharides and carraginans of red algae are rich source of soluble fibers which can account for antitumor activities depending upon chemistry of various secondary metabolites and metabolism of cell line. Flavons-3-ols containing catechins from many red algae block the telomerase activity in colon cancer cells. Contraceptive agents were tested from red algae as a source for post-coital. Lectin of red algae showed pro-healing properties and anti-ulcerogenic activities. Carragenates from red algae also conferred a positive influence on diabetes. Red algae depicted a reducing effect on plasma lipids and obesity. Porphyran from red alga can act as anti-hyperlipidemic agent also reduces the apolipoprotein B100 via suppression of lipid synthesis in human liver.

Summary

The polyphenolic extracts of Laurencia undulate, Melanothamnus afaqhusainii and Solieria robusta extract show anti-inflammatory effects against multiple genera of devastating fungi. Antioxidants such as phlorotannins, ascorbic acids, tocopherols, carotenoids from red algae showed toxicity on some cancer cells without side effects. Red algae Laurencia nipponica was found insecticidal against mosquito larvae. Red algae fibers are very important in laxative and purgative activities. Gracilaria tenuistipitat resisted in agricultural lands polluted with cadmium and copper.

Outlook

In the recent decades biotechnological applications of red algae has been increased. Polysaccharides derived from red algae are important tool for formulation of drugs delivery system via nanotechnology.


Corresponding authors: Ejaz Aziz, Department of Botany, Government Degree College Khanpur, Haripur22650, Pakistan, E-mail: ; and Mohammad Ali Shariati, Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel City, 302026, Russia, E-mail:

  1. Research funding: None declared.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

  4. Employment or leadership: None declared.

  5. Honorarium: None declared.

References

1. Shen, Q, Li, H, Li, Y, Wang, Z, Liu, J, Yang, W. Molecular identification of green algae from the rafts based infrastructure of Porphyra yezoensis. Mar Pollut Bull 2012;64:2077–82. https://doi.org/10.1016/j.marpolbul.2012.07.021.https://doi.org/10.1016/j.marpolbul.2012.07.021Suche in Google Scholar PubMed

2. Lopes, GLL. Seaweeds from the Portuguese coast: chemistry, antimicrobial and antiinflammatory capacity. [Ph.D. thesis]. 2014.Suche in Google Scholar

3. Holdt, SL, Kraan, S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 2011;23:543–97. https://doi.org/10.1007/s10811-010-9632-5.https://doi.org/10.1007/s10811-010-9632-5Suche in Google Scholar

4. Thundimadathil, J. Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012;2012:1–13. https://doi.org/10.1155/2012/967347.https://doi.org/10.1155/2012/967347Suche in Google Scholar PubMed PubMed Central

5. Bhadury, P, Wright, PC. Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 2004;219:561–78. https://doi.org/10.1007/s00425-004-1307-5.https://doi.org/10.1007/s00425-004-1307-5Suche in Google Scholar PubMed

6. Khan, W, Rayirath, UP, Subramanian, S, Jithesh, MN, Rayorath, P, Hodges, DM, et al. Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 2009;28:386–99. https://doi.org/10.1007/s00344-009-9103-x.https://doi.org/10.1007/s00344-009-9103-xSuche in Google Scholar

7. Abdel-Raouf, N, Al-Enazi, NM, Al-Homaidan, AA, Ibraheem, IBM, Al-Othman, MR, Hatamleh, AA. Antibacterial β-amyrin isolated from Laurencia microcladia. Arabian J Chem 2015;8:32–7. https://doi.org/10.1016/j.arabjc.2013.09.033.https://doi.org/10.1016/j.arabjc.2013.09.033Suche in Google Scholar

8. Wang, H-MD, Li, X-C, Lee, D-J, Chang, J-S. Potential biomedical applications of marine algae. Bioresour Technol 2017;244:1407–15. https://doi.org/10.1016/j.biortech.2017.05.198.https://doi.org/10.1016/j.biortech.2017.05.198Suche in Google Scholar PubMed

9. Lüning, K, Pang, S. Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 2003;15:115–9. https://doi.org/10.1023/a:1023807503255.https://doi.org/10.1023/a:1023807503255Suche in Google Scholar

10. Geresh, S, Arad, SM, Levy-Ontman, O, Zhang, W, Tekoah, Y, Glaser, R. Isolation and characterization of poly-and oligosaccharides from the red microalga Porphyridium sp. Carbohydr Res 2009;344:343–9. https://doi.org/10.1016/j.carres.2008.11.012.https://doi.org/10.1016/j.carres.2008.11.012Suche in Google Scholar PubMed

11. Shimonaga, T, Konishi, M, Oyama, Y, Fujiwara, S, Satoh, A, Fujita, N, et al. Variation in storage α-glucans of the Porphyridiales (Rhodophyta). Plant Cell Physiol 2008;49:103–16. https://doi.org/10.1093/pcp/pcm172.https://doi.org/10.1093/pcp/pcm172Suche in Google Scholar PubMed

12. Michel, C, Macfarlane, G. Digestive fates of soluble polysaccharides from marine macroalgae: involvement of the colonic microflora and physiological consequences for the host. J Appl Bacteriol 1996;80:349–69. https://doi.org/10.1111/j.1365-2672.1996.tb03230.x.https://doi.org/10.1111/j.1365-2672.1996.tb03230.xSuche in Google Scholar

13. Rasmussen, RS, Morrissey, MT. Marine biotechnology for production of food ingredients. Adv Food Nutr Res 2007;52:237–92. https://doi.org/10.1016/S1043-4526(06)52005-4.https://doi.org/10.1016/S1043-4526(06)52005-4Suche in Google Scholar

14. Sánchez‐Machado, D, López‐Hernández, J, Paseiro‐Losada, P, López‐Cervantes, J. An HPLC method for the quantification of sterols in edible seaweeds. Biomed Chromatogr 2004;18:183–90. https://doi.org/10.1002/bmc.316.https://doi.org/10.1002/bmc.316Suche in Google Scholar

15. Haugan, JA. Algal carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem Systemat Ecol 1994;22:31–41. https://doi.org/10.1016/0305-1978(94)90112-0.https://doi.org/10.1016/0305-1978(94)90112-0Suche in Google Scholar

16. König, GM, Wright, AD, Linden, A. Plocamium hamatum and its monoterpenes: chemical and biological investigations of the tropical marine red alga. Phytochemistry 1999;52:1047–1053.10.1016/S0031-9422(99)00284-8Suche in Google Scholar

17. Shankhadarwar, S. Phytochemical analysis of red alga Acanthophora spicifera (Vahl) collected from Mumbai, India. J Chem Pharmaceut Res 2015;7:441–4.Suche in Google Scholar

18. Kumar, KS, Ganesan, K, Rao, PS. Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty–an edible seaweed. Food Chem 2008;107:289–95. https://doi.org/10.1016/j.foodchem.2007.08.016.https://doi.org/10.1016/j.foodchem.2007.08.016Suche in Google Scholar

19. Rafiquzzaman, S, Ahmad, MU, Lee, JM, Kim, EY, Kim, YO, Kim, DG, et al. Phytochemical composition and antioxidant activity of edible red alga Hypnea musciformis from Bangladesh. J Food Process Preserv 2016;40:1074–83. https://doi.org/10.1111/jfpp.12688.https://doi.org/10.1111/jfpp.12688Suche in Google Scholar

20. Kiruba, NJM, Pradeep, MA, Juliana, SJB. Study of phytoconstituents and antibacterial activity of Kappaphycus alvarezii. Int J Curr Microbiol Appl Sci. 2015;4:1209–17.Suche in Google Scholar

21. Dayuti, S, editor. Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium. In: IOP conference series: earth and environmental science. Bristol: IOP Publishing; 2018confproc.10.1088/1755-1315/137/1/012074Suche in Google Scholar

22. Panneer, J, Balakrishnan, C. Phytoconstituents screening and in-vitro evaluation of total antioxidant activity of marine red algae Gracilaria fergusonii J. Agardh. Int J Pharm Phytopharmacol Res 2017;6:9–13. https://doi.org/10.24896/eijppr.2016612.https://doi.org/10.24896/eijppr.2016612Suche in Google Scholar

23. Yacout, G, Ghareeb, DA, Elguindy, NM, Elmoneam, AAA. Phytochemical constituents and bioscreening activities of Alexandria Mediterranean sea green and red algae. J Environ Sci Health Part B 2011;38:463–78.Suche in Google Scholar

24. Alghazeer, R, Whida, F, Abduelrhman, E, Gammoudi, F, Azwai, S. Screening of antibacterial activity in marine green, red and brown macroalgae from the western coast of Libya. Nat Sci 2013;5:7–14. https://doi.org/10.4236/ns.2013.51002.https://doi.org/10.4236/ns.2013.51002Suche in Google Scholar

25. Cian, RE, Fajardo, MA, Alaiz, M, Vioque, J, González, RJ, Drago, SR. Chemical composition, nutritional and antioxidant properties of the red edible seaweed Porphyra columbina. Int J Nutr Food Sci 2014;65:299–305. https://doi.org/10.3109/09637486.2013.854746.https://doi.org/10.3109/09637486.2013.854746Suche in Google Scholar

26. Norziah, MH, Ching, CY. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem 2000;68:69–76. https://doi.org/10.1016/s0308-8146(99)00161-2.https://doi.org/10.1016/s0308-8146(99)00161-2Suche in Google Scholar

27. Wen, X, Peng, C, Zhou, H, Lin, Z, Lin, G, Chen, S, et al. Nutritional composition and assessment of Gracilaria lemaneiformis Bory. J Integr Plant Biol 2006;48:1047–53. https://doi.org/10.1111/j.1744-7909.2006.00333.x.https://doi.org/10.1111/j.1744-7909.2006.00333.xSuche in Google Scholar

28. Wong, K, Cheung, PC. Nutritional evaluation of some subtropical red and green seaweeds: Part I—proximate composition, amino acid profiles and some physico-chemical properties. Food Chemist 2000;71:475–82. https://doi.org/10.1016/S0308-8146(00)00175-8.https://doi.org/10.1016/S0308-8146(00)00175-8Suche in Google Scholar

29. Benjama, O, Masniyom, P. Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in Southern Thailand. Songklanakarin J Sci Technol 2012;34:223–30.Suche in Google Scholar

30. Siddique, M, Khan, M, Bhuiyan, M. Nutritional composition and amino acid profile of a sub-tropical red seaweed Gelidium pusillum collected from St. Martin’s Island, Bangladesh. Int Food Res J 2013;20:2287–92.10.3153/jfscom.2013018Suche in Google Scholar

31. McDermid, KJ, Stuercke, B. Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 2003;15:513–24. https://doi.org/10.1023/b:japh.0000004345.31686.7f.https://doi.org/10.1023/b:japh.0000004345.31686.7fSuche in Google Scholar

32. Reka, P, Banu, TA, Seethalakshmi, M. Elemental composition of selected edible seaweeds using SEM-energy dispersive spectroscopic analysis. Int Food Res J. 2017;24:600–6.Suche in Google Scholar

33. Carneiro, JG, Rodrigues, JAG, Teles, FB, Cavalcante, ABD, Benevides, NMB. Analysis of some chemical nutrients in four Brazilian tropical seaweeds. Acta Sci Biol Sci 2014;36:137. https://doi.org/10.4025/actascibiolsci.v36i2.19328.https://doi.org/10.4025/actascibiolsci.v36i2.19328Suche in Google Scholar

34. Rupérez, P. Mineral content of edible marine seaweeds. Food Chem 2002;79:23–6. https://doi.org/10.1016/s0308-8146(02)00171-1.https://doi.org/10.1016/s0308-8146(02)00171-1Suche in Google Scholar

35. Turan, F, Ozgun, S, Sayın, S, Ozyılmaz, G. Biochemical composition of some red and green seaweeds from Iskenderun Bay, the northeastern Mediterranean coast of Turkey. J Black Sea/Mediterr Environ 2015;21:239–49.Suche in Google Scholar

36. Ashoush, YA, El-Sayed, SM, Farid, HE, Abd-Elwahab, MA. Biochemical studies on red algae Gelidium sp. grown in Egypt. Chem Res J 2017;5:334–41.Suche in Google Scholar

37. Ajisaka, K, Agawa, S, Nagumo, S, Kurato, K, Yokoyama, T, Arai, K, et al. Evaluation and comparison of the antioxidative potency of various carbohydrates using different methods. J Agric Food Chem 2009;57:3102–7. https://doi.org/10.1021/jf804020u.https://doi.org/10.1021/jf804020uSuche in Google Scholar PubMed

38. Heo, S-J, Cha, S-H, Lee, K-W, Jeon, Y-J. Antioxidant activities of red algae from Jeju Island. Algae. 2006;21:149–56. https://doi.org/10.4490/algae.2006.21.1.149.https://doi.org/10.4490/algae.2006.21.1.149Suche in Google Scholar

39. Tierney, MS, Croft, AK, Hayes, M. A review of antihypertensive and antioxidant activities in macroalgae. Bot Mar. 2010;53:387–408. https://doi.org/10.1515/bot.2010.044.https://doi.org/10.1515/bot.2010.044Suche in Google Scholar

40. Lohrmann, NL, Logan, BA, Johnson, AS. Seasonal acclimatization of antioxidants and photosynthesis in Chondrus crispus and Mastocarpus stellatus, two co-occurring red algae with differing stress tolerances. Biol Bull 2004;207:225–32. https://doi.org/10.2307/1543211.https://doi.org/10.2307/1543211Suche in Google Scholar PubMed

41. Soni, B, Visavadiya, NP, Madamwar, D. Attenuation of diabetic complications by C-phycoerythrin in rats: antioxidant activity of C-phycoerythrin including copper-induced lipoprotein and serum oxidation. Br J Nutr 2009;102:102–9. https://doi.org/10.1017/s0007114508162973.https://doi.org/10.1017/s0007114508162973Suche in Google Scholar PubMed

42. Yabuta, Y, Fujimura, H, Kwak, CS, Enomoto, T, Watanabe, F. Antioxidant activity of the phycoerythrobilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res 2010;16:347–52. https://doi.org/10.3136/fstr.16.347.https://doi.org/10.3136/fstr.16.347Suche in Google Scholar

43. Barahona, T, Chandía, NP, Encinas, MV, Matsuhiro, B, Zúñiga, EA. Antioxidant capacity of sulfated polysaccharides from seaweeds. A kinetic approach. Food Hydrocolloids. 2011;25:529–35. https://doi.org/10.1016/j.foodhyd.2010.08.004.https://doi.org/10.1016/j.foodhyd.2010.08.004Suche in Google Scholar

44. Costa, LS, Fidelis, GP, Cordeiro, SL, Oliveira, R, Sabry, DA, Câmara, RBG, et al. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother 2010;64:21–8. https://doi.org/10.1016/j.biopha.2009.03.005.https://doi.org/10.1016/j.biopha.2009.03.005Suche in Google Scholar PubMed

45. Sokolova, EV, Barabanova, AO, Bogdanovich, RN, Khomenko, VA, Solov’eva, TF, Yermak, I. In vitro antioxidant properties of red algal polysaccharides. Biomed Prev Nutr. 2011;1:161–7. https://doi.org/10.1016/j.bionut.2011.06.011.https://doi.org/10.1016/j.bionut.2011.06.011Suche in Google Scholar

46. Schagen, SK, Zampeli, VA, Makrantonaki, E, Zouboulis, CC. Discovering the link between nutrition and skin aging. Derm Endocrinol 2012;4:298–307. https://doi.org/10.4161/derm.22876.https://doi.org/10.4161/derm.22876Suche in Google Scholar PubMed PubMed Central

47. Daniel, S, Cornelia, S, Fred, Z. UV-A sunscreen from red algae for protection against premature skin aging. Cosmet Toilet Manufact Worldw 2004;129:139–43.Suche in Google Scholar

48. Hoseinifar, SH, Yousefi, S, Capillo, G, Paknejad, H, Khalili, M, Tabarraei, A, et al. Mucosal immune parameters, immune and antioxidant defence related genes expression and growth performance of zebrafish (Danio rerio) fed on Gracilaria gracilis powder. Fish Shellfish Immunol 2018;83:232–7. https://doi.org/10.1016/j.fsi.2018.09.046.https://doi.org/10.1016/j.fsi.2018.09.046Suche in Google Scholar PubMed

49. Negreanu-Pîrjol, T, Negreanu-Pirjol, B, Sîrbu, R, Paraschiv, G, Meghea, A. Comparative studies regarding the antioxidative activity of some therapeutic marine algae species along the Romanian Black Sea coast. J Environ Prot Ecol 2012;13:1744–50.Suche in Google Scholar

50. Farah Diyana, A, Abdullah, A, Shahrul Hisham, Z, Chan, K. Antioxidant activity of red algae Kappaphycus alvarezii and Kappaphycus striatum. Int Food Res J 2015;22:1977–84.Suche in Google Scholar

51. Murugesan, S, Bhuvaneswari, S. Evaluation of antioxidant activity of methanol extracts of red algae Chondrococcus hornemannii and Spyridia fusiformis. Int J Adv Pharm 2016;5:8–11. https://doi.org/10.7439/ijap.v5i1.2921.https://doi.org/10.7439/ijap.v5i1.2921Suche in Google Scholar

52. Widowati, I, Lubac, D, Puspita, M, Bourgougnon, N. Antibacterial and antioxidant properties of the red alga Gracilaria verrucosa from the north coast of Java, Semarang, Indonesia. Int J Latest Res Sci Technol 2014;3:179–85.Suche in Google Scholar

53. Zubia, M, Fabre, M-S, Kerjean, V, Deslandes, E. Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar 2009;52:268–77. https://doi.org/10.1515/bot.2009.037.https://doi.org/10.1515/bot.2009.037Suche in Google Scholar

54. TÜney, İ, Cadirci, BH, Ünal, D, Sukatar, A. Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turk J Biol 2006;30:171–5.Suche in Google Scholar

55. Karabay‐Yavasoglu, NU, Sukatar, A, Ozdemir, G, Horzum, Z. Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens. Phytother Res: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 2007;21:153–6. https://doi.org/10.1002/ptr.2045.https://doi.org/10.1002/ptr.2045Suche in Google Scholar PubMed

56. Hamed, SM, El-Rhman, AAA, Abdel-Raouf, N, Ibraheem, IB. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef Univ J Basic Appl Sci 2018;7:104–10. https://doi.org/10.1016/j.bjbas.2017.08.002.https://doi.org/10.1016/j.bjbas.2017.08.002Suche in Google Scholar

57. Lee, J-C, Hou, M-F, Huang, H-W, Chang, F-R, Yeh, C-C, Tang, J-Y, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Canc Cell Int 2013;13:55. https://doi.org/10.1186/1475-2867-13-55.https://doi.org/10.1186/1475-2867-13-55Suche in Google Scholar PubMed PubMed Central

58. Oumaskour, K, Boujaber, N, Etahiri, S, Assobhel, O. Anti-inflammatory and antimicrobial activities of twenty-three marine algae from the coast of SidiBouzid (El Jadida-Morocco). Int J Pharm Pharmaceut Sci 2013;5:145–9.Suche in Google Scholar

59. Filippin, LI, Vercelino, R, Marroni, N, Xavier, RM. Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol. 2008;152:415–22. https://doi.org/10.1111/j.1365-2249.2008.03634.x.https://doi.org/10.1111/j.1365-2249.2008.03634.xSuche in Google Scholar PubMed PubMed Central

60. Klegeris, A, McGeer, EG, McGeer, PL. Therapeutic approaches to inflammation in neurodegenerative disease. Curr Opin Neurol 2007;20:351–7. https://doi.org/10.1097/wco.0b013e3280adc943.https://doi.org/10.1097/wco.0b013e3280adc943Suche in Google Scholar

61. Jung, W-K, Heo, S-J, Jeon, Y-J, Lee, C-M, Park, Y-M, Byun, H-G, et al. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J Agric Food Chem 2009;57:4439–46. https://doi.org/10.1021/jf9003913.https://doi.org/10.1021/jf9003913Suche in Google Scholar PubMed

62. Boonchum, W, Peerapornpisal, Y, Kanjanapothi, D, Pekkoh, J, Amornlerdpison, D, Pumas, C, et al. Antimicrobial and anti-inflammatory properties of various seaweeds from the Gulf of Thailand. Int J Agric Biol 2011;13:100–4. https://doi.org/10.463/ZIP/2011/13-1-100-104.https://doi.org/10.463/ZIP/2011/13-1-100-104Suche in Google Scholar

63. Vázquez-Sánchez, J, Ramón-Gallegos, E, Mojica-Villegas, A, Madrigal-Bujaidar, E, Pérez-Pastén-Borja, R, Chamorro-Cevallos, G. Spirulina maxima and its protein extract protect against hydroxyurea-teratogenic insult in mice. Food Chem Toxicol 2009;47:2785–9. https://doi.org/10.1016/j.fct.2009.08.013.https://doi.org/10.1016/j.fct.2009.08.013Suche in Google Scholar PubMed

64. Chen, K-J, Tseng, C-K, Chang, F-R, Yang, J-I, Yeh, C-C, Chen, W-C, et al. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation. PloS One 2013;8:e57704. https://doi.org/10.1371/journal.pone.0057704.https://doi.org/10.1371/journal.pone.0057704Suche in Google Scholar PubMed PubMed Central

65. Lim, CS, Jin, D-Q, Sung, J-Y, Lee, JH, Choi, HG, Ha, I, et al. Antioxidant and anti-inflammatory activities of the methanolic extract of Neorhodomela aculeate in hippocampal and microglial cells. Biol Pharm Bull 2006;29:1212–6. https://doi.org/10.1248/bpb.29.1212.https://doi.org/10.1248/bpb.29.1212Suche in Google Scholar PubMed

66. König, GM, Wright, AD. Sesquiterpene content of the antibacterial dichloromethane extract of the marine red alga Laurencia obtusa. Planta Med 1997;63:186–7. https://doi.org/10.1055/s-2006-957643.https://doi.org/10.1055/s-2006-957643Suche in Google Scholar PubMed

67. Chatter, R, Othman, RB, Rabhi, S, Kladi, M, Tarhouni, S, Vagias, C, et al. In vivo and in vitro anti-inflammatory activity of neorogioltriol, a new diterpene extracted from the red algae Laurencia glandulifera. Mar Drugs 2011;9:1293–306. https://doi.org/10.3390/md9071293.https://doi.org/10.3390/md9071293Suche in Google Scholar PubMed PubMed Central

68. Kladi, M, Vagias, C, Stavri, M, Rahman, MM, Gibbons, S, Roussis, V. C15 acetogenins with antistaphylococcal activity from the red alga Laurencia glandulifera. Phytochem Lett 2008;1:31–6. https://doi.org/10.1016/j.phytol.2007.12.004.https://doi.org/10.1016/j.phytol.2007.12.004Suche in Google Scholar

69. Iliopoulou, D, Mihopoulos, N, Vagias, C, Papazafiri, P, Roussis, V. Novel cytotoxic brominated diterpenes from the red alga Laurencia obtusa. J Org Chem 2003;68:7667–74. https://doi.org/10.1021/jo0342323.https://doi.org/10.1021/jo0342323Suche in Google Scholar PubMed

70. Ayyad, SEN, Al-Footy, KO, Alarif, WM, Sobahi, TR, Bassaif, SA, Makki, MS, et al. Bioactive C15 acetogenins from the red alga Laurencia obtusa. Chem Pharm Bull 2011;59:1294–8. https://doi.org/10.1248/cpb.59.1294.https://doi.org/10.1248/cpb.59.1294Suche in Google Scholar PubMed

71. Shin, E-S, Hwang, H-J, Kim, I-H, Nam, T-J. A glycoprotein from Porphyra yezoensis produces anti-inflammatory effects in liposaccharide-stimulated macrophages via the TLR4 signaling pathway. Int J Mol Med 2011;28:809–15. https://doi.org/10.3892/ijmm.2011.729.https://doi.org/10.3892/ijmm.2011.729Suche in Google Scholar PubMed

72. Lee, H-J, Kang, G-J, Yang, E-J, Park, S-S, Yoon, W-J, Jung, J-H, et al. Two enone fatty acids isolated from Gracilaria verrucosa suppress the production of inflammatory mediators by down-regulating NF-κB and STAT1 activity in lipopolysaccharide-stimulated Raw 264.7 cells. Arch Pharm Res. 2009;32:453–62. https://doi.org/10.1007/s12272-009-1320-0.https://doi.org/10.1007/s12272-009-1320-0Suche in Google Scholar PubMed

73. Ryan, S, O’gorman, DM, Nolan, YM. Evidence that the marine‐derived multi‐mineral aquamin has anti‐inflammatory effects on cortical glial‐enriched cultures. Phytother Res 2011;25:765–7. https://doi.org/10.1002/ptr.3309.https://doi.org/10.1002/ptr.3309Suche in Google Scholar PubMed

74. Grünewald, N, Groth, I, Alban, S. Evaluation of seasonal variations of the structure and anti-inflammatory activity of sulfated polysaccharides extracted from the red alga Delesseria sanguinea (Hudson) Lamouroux (Ceramiales, Delesseriaceae). Biomacromolecules 2009;10:1155–62. https://doi.org/10.1021/bm8014158.https://doi.org/10.1021/bm8014158Suche in Google Scholar PubMed

75. Neves, S, Freitas, A, Souza, B, Rocha, M, Correia, M, Sampaio, D, et al. Antinociceptive properties in mice of a lectin isolated from the marine alga Amansia multifida Lamouroux. Braz J Med Biol Res 2007;40:127–34. https://doi.org/10.1590/s0100-879x2007000100016.https://doi.org/10.1590/s0100-879x2007000100016Suche in Google Scholar PubMed

76. Bitencourt, FDS, Figueiredo, JG, Mota, MR, Bezerra, CC, Silvestre, PP, Vale, MR, et al. Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. N Schmied Arch Pharmacol 2008;377:139. https://doi.org/10.1007/s00210-008-0262-2.https://doi.org/10.1007/s00210-008-0262-2Suche in Google Scholar PubMed

77. Silva, LMCM, Lima, V, Holanda, ML, Pinheiro, PG, Rodrigues, JAG, Lima, MEP, et al. Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea. Biol Pharm Bull 2010;33:830–5. https://doi.org/10.1248/bpb.33.830.https://doi.org/10.1248/bpb.33.830Suche in Google Scholar PubMed

78. Uemura, D. Bioorganic studies on marine natural products—diverse chemical structures and bioactivities. Chem Rec 2006;6(5):235–248.10.1002/tcr.20087Suche in Google Scholar PubMed

79. Blunt, JW, Copp, BR, Munro, MH, Northcote, PT, Prinsep, MR. Marine natural products. In: Natural product reports; 2006;23:26–78.10.1039/b502792fSuche in Google Scholar

80. Baloch, GN, Tariq, S, Ehteshamul-Haque, S, Athar, M, Sultana, V, Ara, J. Management of root diseases of eggplant and watermelon with the application of asafoetida and seaweeds. J Appl Bot Food Qual 2013;86. https://doi.org/10.5073/JABFQ.2013.086.019.https://doi.org/10.5073/JABFQ.2013.086.019Suche in Google Scholar

81. Khan, A, Naz, S, Abid, M. Evaluation of marine red alga Melanothamnus afaqhusainii against Meloidogyne incognita, fungus and as fertilizing potential on okra. Pakistan J Nematol 2016;34:91–100. https://doi.org/10.18681/pjn.v34.i01.p91.https://doi.org/10.18681/pjn.v34.i01.p91Suche in Google Scholar

82. Pandian, P, Selvamuthukumar, S, Manavalan, R, Parthasarathy, V. Screening of antibacterial and antifungal activities of red marine algae Acanthaphora spicifera (Rhodophyceae). J Biomed Sci Res 2011;3:444–8.Suche in Google Scholar

83. Jiménez, E, Dorta, F, Medina, C, Ramírez, A, Ramírez, I, Peña-Cortés, H. Anti-phytopathogenic activities of macro-algae extracts. Mar Drugs 2011;9:739–56. https://doi.org/10.3390/md9050739.https://doi.org/10.3390/md9050739Suche in Google Scholar PubMed PubMed Central

84. Sultana, V, Baloch, GN, Ara, J, Ehteshamul-Haque, S, Tariq, RM, Athar, M. Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J Appl Bot Food Qual 2012;84:162.Suche in Google Scholar

85. De Corato, U, Salimbeni, R, De Pretis, A, Avella, N, Patruno, G. Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biol Technol 2017;131:16–30. https://doi.org/10.1016/j.postharvbio.2017.04.011.https://doi.org/10.1016/j.postharvbio.2017.04.011Suche in Google Scholar

86. Sultana, V, Ehteshamul-Haque, S, Ara, J, Athar, M. Comparative efficacy of brown, green and red seaweeds in the control of root infecting fungi and okra. Int J Environ Sci Technol 2005;2:129–32. https://doi.org/10.1007/bf03325866.https://doi.org/10.1007/bf03325866Suche in Google Scholar

87. Rizvi, MA, Shameel, M. In vitro nematicidal activities of seaweed extracts from Karachi coast. Pakistan J Bot 2006;38:1245.Suche in Google Scholar

88. Khanzada, AK, Shaikh, W, Kazi, T, Kabir, S, Soofia, S. Antifungal activity, elemental analysis and determination of total protein of seaweed, Solieria robusta (Greville) Kylin from the coast of Karachi. Pak J Bot 2007;39:931–7.Suche in Google Scholar

89. Soares, F, Fernandes, C, Silva, P, Pereira, L, Gonçalves, T. Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus. J Appl Phycol 2016;28:2991–8. https://doi.org/10.1007/s10811-016-0849-9.https://doi.org/10.1007/s10811-016-0849-9Suche in Google Scholar

90. Bouhraoua, J, Lakhdar, F, Mabrouki, S, Moustarhfir, F, Assobhei, O, Etahiri, S. Screening of the antifungal activity of 22 seaweed from the coast of El Jadida Morocco against bipolaris sorokiniana. Res J Pharmaceut Biol Chem Sci 2018;9:1091–9.Suche in Google Scholar

91. Ahmadi, A, Zorofchian Moghadamtousi, S, Abubakar, S, Zandi, K. Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Res Int 2015;2015:1–10. https://doi.org/10.1155/2015/825203.https://doi.org/10.1155/2015/825203Suche in Google Scholar PubMed PubMed Central

92. Gerber, P, Dutcher, JD, Adams, EV, Sherman, JH. Protective effect of seaweed extracts for chicken embryos infected with influenza B or mumps virus. Proc Soc Exp Biol Med 1958;99:590–3. https://doi.org/10.3181/00379727-99-24429.https://doi.org/10.3181/00379727-99-24429Suche in Google Scholar

93. Knutsen, S, Myslabodski, D, Larsen, B, Usov, A. A modified system of nomenclature for red algal galactans. Bot Mar 1994;37:163–70. https://doi.org/10.1515/botm.1994.37.2.163.https://doi.org/10.1515/botm.1994.37.2.163Suche in Google Scholar

94. Lahaye, M. Developments on gelling algal galactans, their structure and physico-chemistry. J Appl Phycol 2001;13:173–84. https://doi.org/10.1023/A:1011142124213.https://doi.org/10.1023/A:1011142124213Suche in Google Scholar

95. Grassauer, A, Weinmuellner, R, Meier, C, Pretsch, A, Prieschl-Grassauer, E, Unger, H. Iota-Carrageenan is a potent inhibitor of rhinovirus infection. Virol J 2008;5:107. https://doi.org/10.1186/1743-422x-5-107.https://doi.org/10.1186/1743-422x-5-107Suche in Google Scholar

96. Buck, CB, Thompson, CD, Roberts, JN, Müller, M, Lowy, DR, Schiller, JT. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2006;2:e69. https://doi.org/10.1371/journal.ppat.0020069.https://doi.org/10.1371/journal.ppat.0020069Suche in Google Scholar

97. Carlucci, M, Scolaro, L, Damonte, E. Herpes simplex virus type 1 variants arising after selection with an antiviral carrageenan: lack of correlation between drug susceptibility and syn phenotype. J Med Virol 2002;68:92–8. https://doi.org/10.1002/jmv.10174.https://doi.org/10.1002/jmv.10174Suche in Google Scholar

98. Carlucci, M, Scolaro, L, Noseda, M, Cerezo, A, Damonte, E. Protective effect of a natural carrageenan on genital herpes simplex virus infection in mice. Antivir Res 2004;64:137–41. https://doi.org/10.1016/s0166-3542(04)00130-5.https://doi.org/10.1016/s0166-3542(04)00130-5Suche in Google Scholar

99. de SF-Tischer, PC, Talarico, LB, Noseda, MD, Guimarães, SMPB, Damonte, EB, Duarte, MER. Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. Carbohydr Polym. 2006;63:459–65. https://doi.org/10.1016/j.carbpol.2005.09.020.https://doi.org/10.1016/j.carbpol.2005.09.020Suche in Google Scholar

100. Talarico, LB, Noseda, MD, Ducatti, DR, Duarte, ME, Damonte, EB. Differential inhibition of dengue virus infection in mammalian and mosquito cells by iota-carrageenan. J Gen Virol 2011;92:1332–42. https://doi.org/10.1099/vir.0.028522-0.https://doi.org/10.1099/vir.0.028522-0Suche in Google Scholar

101. Yamada, T, Ogamo, A, Saito, T, Watanabe, J, Uchiyama, H, Nakagawa, Y. Preparation and anti-HIV activity of low-molecular-weight carrageenans and their sulfated derivatives. Carbohydr Polym 1997;32:51–5. https://doi.org/10.1016/s0144-8617(96)00128-2.https://doi.org/10.1016/s0144-8617(96)00128-2Suche in Google Scholar

102. Delattre, C, Fenoradosoa, TA, Michaud, P. Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Braz Arch Biol Technol 2011;54:1075–92. https://doi.org/10.1590/s1516-89132011000600002.https://doi.org/10.1590/s1516-89132011000600002Suche in Google Scholar

103. Estevez, JM, Ciancia, M, Cerezo, AS. DL-Galactan hybrids and agarans from gametophytes of the red seaweed Gymnogongrus torulosus. Carbohydr Res 2001;331:27–41. https://doi.org/10.1016/s0008-6215(01)00015-5.https://doi.org/10.1016/s0008-6215(01)00015-5Suche in Google Scholar

104. Carlucci, M, Ciancia, M, Matulewicz, M, Cerezo, A, Damonte, E. Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antivir Res 1999;43:93–102. https://doi.org/10.1016/s0166-3542(99)00038-8.https://doi.org/10.1016/s0166-3542(99)00038-8Suche in Google Scholar

105. Rodríguez, MC, Merino, ER, Pujol, CA, Damonte, EB, Cerezo, AS, Matulewicz, MC. Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales). Carbohydr Res 2005;340:2742–51. https://doi.org/10.1016/j.carres.2005.10.001.https://doi.org/10.1016/j.carres.2005.10.001Suche in Google Scholar PubMed

106. Witvrouw, M, Este, J, Mateu, M, Reymen, D, Andrei, G, Snoeck, R, et al. Activity of a sulfated polysaccharide extracted from the red seaweed Aghardhiella tenera against human immunodeficiency virus and other enveloped viruses. Antiviral Chem Chemother 1994;5:297–303. https://doi.org/10.1177/095632029400500503.https://doi.org/10.1177/095632029400500503Suche in Google Scholar

107. Matsuhiro, B, Conte, AF, Damonte, EB, Kolender, AA, Matulewicz, MC, Mejías, EG, et al. Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydr Res 2005;340:2392–402. https://doi.org/10.1016/j.carres.2005.08.004.https://doi.org/10.1016/j.carres.2005.08.004Suche in Google Scholar PubMed

108. Talarico, LB, Duarte, ME, Zibetti, RG, Noseda, MD, Damonte, EB. An algal-derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection. Planta Med 2007;73:1464–8. https://doi.org/10.1055/s-2007-990241.https://doi.org/10.1055/s-2007-990241Suche in Google Scholar PubMed

109. Yuan, YV, Carrington, MF, Walsh, NA. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 2005;43:1073–81. https://doi.org/10.1016/j.fct.2005.02.012.https://doi.org/10.1016/j.fct.2005.02.012Suche in Google Scholar PubMed

110. Yoshie, Y, Wang, W, Petillo, D, Suzuki, T. Distribution of catechins in Japanese seaweeds. Fish Sci 2000;66:998–1000. https://doi.org/10.1046/j.1444-2906.2000.00160.x.https://doi.org/10.1046/j.1444-2906.2000.00160.xSuche in Google Scholar

111. Moo-Puc, R, Robledo, D, Freile-Pelegrín, Y. In vitro cytotoxic and antiproliferative activities of marine macroalgae from Yucatán, Mexico. Cienc Mar 2009;35:345–58. https://doi.org/10.7773/cm.v35i4.1617.https://doi.org/10.7773/cm.v35i4.1617Suche in Google Scholar

112. Moo-Puc, R, Robledo, D, Freile-Pelegrin, Y. Improved antitumoral activity of extracts derived from cultured Penicillus dumetosus. Trop J Pharmaceut Res 2011;10:177–185. https://doi.org/10.4314/tjpr.v10i2.66561.https://doi.org/10.4314/tjpr.v10i2.66561Suche in Google Scholar

113. Moo-Puc, R, Robledo, D, Freile-Pelegrin, Y. Enhanced antitumoral activity of extracts derived from cultured Udotea flabellum (Chlorophyta). Evid base Compl Alternative Med 2011;2011:1–7. https://doi.org/10.1155/2011/969275.https://doi.org/10.1155/2011/969275Suche in Google Scholar

114. Damme, EJV, Peumans, WJ, Barre, A, Rougé, P. Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci. 1998;17:575–692. https://doi.org/10.1016/s0735-2689(98)00365-7.https://doi.org/10.1016/s0735-2689(98)00365-7Suche in Google Scholar

115. Namvar, F, Baharara, J, Mahdi, A. Antioxidant and anticancer activities of selected Persian Gulf algae. Indian J Clin Biochem 2014;29:13–20. https://doi.org/10.1007/s12291-013-0313-4.https://doi.org/10.1007/s12291-013-0313-4Suche in Google Scholar

116. Osuna-Ruiz, I, López-Saiz, CM, Burgos-Hernández, A, Velázquez, C, Nieves-Soto, M, Hurtado-Oliva, MA. Antioxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico Pharm Biol 2016;54:2196–210. https://doi.org/10.3109/13880209.2016.1150305.https://doi.org/10.3109/13880209.2016.1150305Suche in Google Scholar

117. Murugan, K, Iyer, V. Antioxidant and antiproliferative activities of marine algae, Gracilaria edulis and Enteromorpha lingulata, from Chennai Coast. Int J Canc Res 2012;8:15–26. https://doi.org/10.3923/ijcr.2012.15.26.https://doi.org/10.3923/ijcr.2012.15.26Suche in Google Scholar

118. Kannu, KD, Rani, KS, Jothi, RA, Gowsalya, GU, Ramakritinan, C. In-vivo anticancer activity of red algae (Gelidiela acerosa and Acanthophora spicifera). Int J Pharmaceut Sci Res 2014;5:3347. https://doi.org/10.13040/IJPSR.0975-8232.5(8).3347-52.https://doi.org/10.13040/IJPSR.0975-8232.5(8).3347-52Suche in Google Scholar

119. Ghannam, A, Murad, H, Jazzara, M, Odeh, A, Allaf, AW. Isolation, structural characterization, and antiproliferative activity of phycocolloids from the red seaweed Laurencia papillosa on MCF-7 human breast cancer cells. Int J Biol Macromol 2018;108:916–26. https://doi.org/10.1016/j.ijbiomac.2017.11.001.https://doi.org/10.1016/j.ijbiomac.2017.11.001Suche in Google Scholar

120. Souza, RB, Frota, AF, Silva, J, Alves, C, Neugebauer, AZ, Pinteus, S, et al. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: antimicrobial, anticancer and neuroprotective potential. Int J Biol Macromol 2018;112:1248–56. https://doi.org/10.1016/j.ijbiomac.2018.02.029.https://doi.org/10.1016/j.ijbiomac.2018.02.029Suche in Google Scholar

121. Ratnasooriya, W, Premakumara, G, Tillekeratne, L. Post-coital contraceptive activity of crude extracts of Sri Lankan marine red algae. Contraception 1994;50:291–9. https://doi.org/10.1016/0010-7824(94)90074-4.https://doi.org/10.1016/0010-7824(94)90074-4Suche in Google Scholar

122. Premakumara, G, Ratnasooriya, W, Tillekeratne, L. Studies on the post-coital contraceptive mechanisms of crude extract of Sri Lankan marine red algae, Gelidiella acerosa. Contraception 1995;52:203–7. https://doi.org/10.1016/0010-7824(95)00150-9.https://doi.org/10.1016/0010-7824(95)00150-9Suche in Google Scholar

123. Premakumara, G, Ratnasooriya, W, Tillekeratne, L. Isolation of a non-steroidal contragestative agent from Sri Lankan marine red alge, Gelidiella acerosa. Contraception 1996;54:379-83. https://doi.org/10.1016/s0010-7824(96)00198-9.https://doi.org/10.1016/s0010-7824(96)00198-9Suche in Google Scholar

124. Gonzaga do Nascimento-Neto, L, Carneiro, RF, Da Silva, SR, Da Silva, BR, Arruda, FVS, Carneiro, VA, et al. Characterization of isoforms of the lectin isolated from the red algae Bryothamnion seaforthii and its pro-healing effect. Mar Drugs 2012;10:1936–54. https://doi.org/10.3390/md10091936.https://doi.org/10.3390/md10091936Suche in Google Scholar PubMed PubMed Central

125. Unnikrishnan, PS, Jayasri, MA. Marine algae as a prospective source for antidiabetic compounds–a brief review. Curr Diabetes Rev 2018;14:237–45. https://doi.org/10.2174/1573399812666161229151407.https://doi.org/10.2174/1573399812666161229151407Suche in Google Scholar PubMed

126. Plaza, M, Cifuentes, A, Ibáñez, E. In the search of new functional food ingredients from algae. Trends Food Sci Technol 2008;19:31–9. https://doi.org/10.1016/j.tifs.2007.07.012.https://doi.org/10.1016/j.tifs.2007.07.012Suche in Google Scholar

127. Makkar, F, Chakraborty, K. Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. I J Food Prop 2017;20:1326–37. https://doi.org/10.1080/10942912.2016.1209216.https://doi.org/10.1080/10942912.2016.1209216Suche in Google Scholar

128. Maeda, H, Yamamoto, R, Hirao, K, Tochikubo, O. Effects of agar (kanten) diet on obese patients with impaired glucose tolerance and type 2 diabetes. Diabetes Obes Metabol 2005;7:40–6. https://doi.org/10.1111/j.1463-1326.2004.00370.x.https://doi.org/10.1111/j.1463-1326.2004.00370.xSuche in Google Scholar PubMed

129. Fei, WHZXT, Shu-hong, Z. An experimental study on the hypoglycemic effect of agar polysaccharide in diabetic rats. Health Med Res Pract 2011;4:004.Suche in Google Scholar

130. Liu, H-C, Chang, C-J, Yang, T-H, Chiang, M-T. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model. J Food Drug Anal 2017;25:543–9. https://doi.org/10.1016/j.jfda.2016.06.005.https://doi.org/10.1016/j.jfda.2016.06.005Suche in Google Scholar PubMed

131. Kim, K, Nam, K, Kurihara, H, Kim, S. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 2008;69:2820–5. https://doi.org/10.1016/j.phytochem.2008.09.007.https://doi.org/10.1016/j.phytochem.2008.09.007Suche in Google Scholar PubMed

132. Wijesekara, I, Pangestuti, R, Kim, S-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 2011;84:14–21. https://doi.org/10.1016/j.carbpol.2010.10.062.https://doi.org/10.1016/j.carbpol.2010.10.062Suche in Google Scholar

133. Tsuge, K, Okabe, M, Yoshimura, T, Sumi, T, Tachibana, H, Yamada, K. Dietary effects of porphyran from Porphyra yezoensis on growth and lipid metabolism of Sprague-Dawley rats. Food Sci Technol Res 2007;10:147–51. https://doi.org/10.3136/fstr.10.147.https://doi.org/10.3136/fstr.10.147Suche in Google Scholar

134. Inoue, N, Yamano, N, Sakata, K, Nagao, K, Hama, Y, Yanagita, T. The sulfated polysaccharide porphyran reduces apolipoprotein B100 secretion and lipid synthesis in HepG2 cells. Biosc Biotech Biochem 2009;73:447–9. https://doi.org/10.1271/bbb.80688.https://doi.org/10.1271/bbb.80688Suche in Google Scholar PubMed

135. Huff, MW, Burnett, JR. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and hepatic apolipoprotein B secretion. Curr Opin Lipidol 1997;8:138–452. https://doi.org/10.1097/00041433-199706000-00003.https://doi.org/10.1097/00041433-199706000-00003Suche in Google Scholar PubMed

136. Cao, J, Wang, S, Yao, C, Xu, Z, Xu, X. Hypolipidemic effect of porphyran extracted from Pyropia yezoensis in ICR mice with high fatty diet. J Appl Phycol 2016;28:1315–22. https://doi.org/10.1007/s10811-015-0637-y.https://doi.org/10.1007/s10811-015-0637-ySuche in Google Scholar

137. Yang, T-H, Yao, H-T, Chiang, M-T. Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide. J Food Drug Anal 2015;23:758–65. https://doi.org/10.1016/j.jfda.2015.06.003.https://doi.org/10.1016/j.jfda.2015.06.003Suche in Google Scholar PubMed

138. Yang, T-H, Yao, H-T, Chiang, M-T. Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet. J Food Drug Anal 2017;25:931–8. https://doi.org/10.1016/j.jfda.2016.12.008.https://doi.org/10.1016/j.jfda.2016.12.008Suche in Google Scholar PubMed

139. Cen-Pacheco, F, Villa-Pulgarin, JA, Mollinedo, F, Norte, M, Daranas, AH, Fernandez, JJ. Cytotoxic oxasqualenoids from the red alga Laurencia viridis. Eur J Med Chem 2011;46:3302–8. https://doi.org/10.1016/j.ejmech.2011.04.051.https://doi.org/10.1016/j.ejmech.2011.04.051Suche in Google Scholar PubMed

140. Erfani, N, Nazemosadat, Z, Moein, M. Cytotoxic activity of ten algae from the Persian Gulf and Oman sea on human breast cancer cell lines; MDA-MB-231, MCF-7, and T-47D. Pharmacogn Res 2015;7:133. https://doi.org/10.4103/0974-8490.150539.https://doi.org/10.4103/0974-8490.150539Suche in Google Scholar PubMed PubMed Central

141. Pasdaran, A, Hamedi, A, Mamedov, NA. Antibacterial and insecticidal activity of volatile compounds of three algae species of Oman Sea. Int J Second Metabolite 2016;3:66–73. https://doi.org/10.21448/http-ijate-net-index-php-ijsm.243308.https://doi.org/10.21448/http-ijate-net-index-php-ijsm.243308Suche in Google Scholar

142. Mori, S, Sugahara, K, Maeda, M, Nomoto, K, Iwashita, T, Yamagaki, T. Insecticidal activity guided isolation of palytoxin from a red alga, Chondria armata. Tetrahedron Lett 2016;57:3612–7. https://doi.org/10.1016/j.tetlet.2016.06.108.https://doi.org/10.1016/j.tetlet.2016.06.108Suche in Google Scholar

143. San-Martin, A, Negrete, R, Rovirosa, J. Insecticide and acaricide activities of polyhalogenated monoterpenes from Chilean Plocamium cartilagineum. Phytochemistry 1991;30:2165–9. https://doi.org/10.1016/0031-9422(91)83607-m.https://doi.org/10.1016/0031-9422(91)83607-mSuche in Google Scholar

144. El Sayed, KA, Dunbar, DC, Perry, TL, Wilkins, SP, Hamann, MT, Greenplate, JT, et al. Marine natural products as prototype insecticidal agents. J Agric Food Chem 1997;45:2735–9. https://doi.org/10.1021/jf960746+.https://doi.org/10.1021/jf960746+Suche in Google Scholar

145. Watanabe, K, Umeda, K, Miyakado, M. Isolation and identification of three insecticidal principles from the red alga Laurencia nipponica Yamada. Agric Biol Chem 1989;53:2513–5. https://doi.org/10.1271/bbb1961.53.2513.https://doi.org/10.1271/bbb1961.53.2513Suche in Google Scholar

146. Argandona, V, Del Pozo, T, San-Martín, A, Rovirosa, J. Insecticidal activity of Plocamium cartilagineum monoterpenes. Bol Soc Chil Quim 2000;45:371–6. https://doi.org/10.4067/s0366-16442000000300006.https://doi.org/10.4067/s0366-16442000000300006Suche in Google Scholar

147. Fukuzawa, A, Masamune, T. Laurepinnacin and isolaurepinnacin, new acetylenic cyclic ethers from the marine red alga Laurencia pinnata Yamada. Tetrahedron Lett 1981;22:4081–4. https://doi.org/10.1016/s0040-4039(01)82070-0.https://doi.org/10.1016/s0040-4039(01)82070-0Suche in Google Scholar

148. Miyakado, M, Watanabe, K, Umeda, K, Takayama, C, Kurita, Y, Okada, A, et al., editors. Pa19 chemistry and insecticidal action of a new polyhalogenated monoterpenoid, telfairine from a red alga, Plocamium telfairiae. InSymposium on the Chemistry of Natural Products 1988. Tokyo: The Science Council of Japan under the Auspices of the International Union; 1988confproc.Suche in Google Scholar

149. Meda, M, Kodama, T, Tanaka, T, Yoshizumi, H, Takemoto, T, Nomoto, K, et al. Structures of isodomoic acids A, B and C, novel insecticidal amino acids from the red alga Chondria armata. Chem Pharm Bull 1986;34:4892–5. https://doi.org/10.1248/cpb.34.4892.https://doi.org/10.1248/cpb.34.4892Suche in Google Scholar

150. Iliopoulou, D, Vagias, C, Harvala, C, Roussis, V. C15 acetogenins from the red alga Laurencia obtusa. Phytochemistry 2002;59:111–6. https://doi.org/10.1016/s0031-9422(01)00407-1.https://doi.org/10.1016/s0031-9422(01)00407-1Suche in Google Scholar

151. Nelson, TA, Lee, DJ, Smith, BC. Are “green tides” harmful algal blooms? Toxic properties of water‐soluble extracts from two bloom‐forming macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). J Phycol 2003;39:874–9. https://doi.org/10.1046/j.1529-8817.2003.02157.x.https://doi.org/10.1046/j.1529-8817.2003.02157.xSuche in Google Scholar

152. Stanley, N. Production, properties and uses of carrageenan. In: Production and utilization of products from commercial seaweeds FAO fisheries technical paper; 1987;288:116–46confproc.Suche in Google Scholar

153. Watson, DB, editor. Public health and carrageenan regulation: a review and analysis. In: Nineteenth international seaweed symposium. Berlin: Springer; 2007confproc.Suche in Google Scholar

154. Tobacman, JK. Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect 2001;109:983–94. https://doi.org/10.1289/ehp.01109983.https://doi.org/10.1289/ehp.01109983Suche in Google Scholar PubMed PubMed Central

155. Cohen, SM, Ito, N. A critical review of the toxicological effects of carrageenan and processed eucheuma seaweed on the gastrointestinal tract. Crit Rev Toxicol 2002;32:413–44. https://doi.org/10.1080/20024091064282.https://doi.org/10.1080/20024091064282Suche in Google Scholar PubMed

156. McKim, JM. Food additive carrageenan: part I: a critical review of carrageenan in vitro studies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol 2014;44:211–43. https://doi.org/10.3109/10408444.2013.861797.https://doi.org/10.3109/10408444.2013.861797Suche in Google Scholar

157. Cheney, D. Toxic and harmful seaweeds. Seaweed in health and disease prevention. Amsterdam: Elsevier; 2016:407–21 p.10.1016/B978-0-12-802772-1.00013-0Suche in Google Scholar

158. Lahaye, M, Kaeffer, B. Seaweed dietary fibres: structure, physico-chemical and biological properties relevant to intestinal physiology. France: Sciences des Aliments; 1997.Suche in Google Scholar

159. Dawczynski, C, Schubert, R, Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 2007;103:891–9. https://doi.org/10.1016/j.foodchem.2006.09.041.https://doi.org/10.1016/j.foodchem.2006.09.041Suche in Google Scholar

160. McHugh, D. A guide to the seaweed industry FAO fisheries technical paper 441. Rome: Food and Agriculture Organization of the United Nations; 2003.Suche in Google Scholar

161. Lee, J-B, Hayashi, K, Hashimoto, M, Nakano, T, Hayashi, T. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull 2004;52:1091–4. https://doi.org/10.1248/cpb.52.1091.https://doi.org/10.1248/cpb.52.1091Suche in Google Scholar

162. Ghosh, T, Chattopadhyay, K, Marschall, M, Karmakar, P, Mandal, P, Ray, B. Focus on antivirally active sulfated polysaccharides: from structure–activity analysis to clinical evaluation. Glycobiology 2008;19:2–15. https://doi.org/10.1093/glycob/cwn092.https://doi.org/10.1093/glycob/cwn092Suche in Google Scholar

163. Murata, M, Nakazoe, J-I. Production and use of marine algae in Japan. Jpn Agric Res Q 2001;35:281–90. https://doi.org/10.6090/jarq.35.281.https://doi.org/10.6090/jarq.35.281Suche in Google Scholar

164. Urbano, MG, Goñi, I. Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre. Food Chem 2002;76:281–6. https://doi.org/10.1016/s0308-8146(01)00273-4.https://doi.org/10.1016/s0308-8146(01)00273-4Suche in Google Scholar

165. Hemmingson, JA, Furneaux, RH, Murray-Brown, VH. Biosynthesis of agar polysaccharides in Gracilaria chilensis Bird, McLachlan et Oliveira. Carbohydr Res 1996;287:101–15. https://doi.org/10.1016/0008-6215(96)00057-2.https://doi.org/10.1016/0008-6215(96)00057-2Suche in Google Scholar

166. Pal, A, Kamthania, MC, Kumar, A. Bioactive compounds and properties of seaweeds—a review. Open Access Libr J 2014;1:1–17. https://doi.org/10.4236/oalib.1100752.https://doi.org/10.4236/oalib.1100752Suche in Google Scholar

167. Rai, PK. Phytoremediation of heavy metals in a tropical impoundment of industrial region. Environ Monit Assess 2010;165:529–37. https://doi.org/10.1007/s10661-009-0964-z.https://doi.org/10.1007/s10661-009-0964-zSuche in Google Scholar PubMed

168. Beyersmann, D, Hartwig, A. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 2008;82:493–512. https://doi.org/10.1007/s00204-008-0313-y.https://doi.org/10.1007/s00204-008-0313-ySuche in Google Scholar PubMed

169. Mitra, N, Rezvan, Z, Ahmad, MS, Hosein, MGM. Studies of water arsenic and boron pollutants and algae phytoremediation in three springs, Iran. Int J Ecosys 2012;2:32–7. https://doi.org/10.5923/j.ije.20120203.01.https://doi.org/10.5923/j.ije.20120203.01Suche in Google Scholar

170. Lourie, E, Patil, V, Gjengedal, E. Efficient purification of heavy-metal-contaminated water by microalgae-activated pine bark. Water, Air, Soil Pollut 2010;210:493–500. https://doi.org/10.1007/s11270-009-0275-6.https://doi.org/10.1007/s11270-009-0275-6Suche in Google Scholar

171. Priscila, O, Lizângela, R, Natanael, R, Pedro, J, Fabio, A, Claudio, M, et al. Algae of economic importance that accumulate cadmium and lead: a review. Rev Brasileira Farmacogn 2012;22:825–37. https://doi.org/10.1590/s0102-695x2012005000076.https://doi.org/10.1590/s0102-695x2012005000076Suche in Google Scholar

172. Baumann, HA, Morrison, L, Stengel, DB. Metal accumulation and toxicity measured by PAM—chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol Environ Saf 2009;72:1063–75. https://doi.org/10.1016/j.ecoenv.2008.10.010.https://doi.org/10.1016/j.ecoenv.2008.10.010Suche in Google Scholar PubMed

173. Marinho-Soriano, E, Azevedo, C, Trigueiro, T, Pereira, D, Carneiro, M, Camara, M. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int Biodeterior Biodegrad 2011;65:253–7. https://doi.org/10.1016/j.ibiod.2010.10.001.https://doi.org/10.1016/j.ibiod.2010.10.001Suche in Google Scholar

174. Bernasconi, P, Cruz-Uribe, T, Rorrer, G, Bruce, N, Cheney, D. Development of a TNT-detoxifying strain of the seaweed Porphyra yezoensis through genetic engineering. J Phycol 2004;40:31.Suche in Google Scholar

175. Riahi, K, Thayer, BB, Mammou, AB, Ammar, AB, Jaafoura, MH. Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers. J Hazard Mater 2009;170:511–9. https://doi.org/10.1016/j.jhazmat.2009.05.004.https://doi.org/10.1016/j.jhazmat.2009.05.004Suche in Google Scholar PubMed

176. Rathod, M, Mody, K, Basha, S. Efficient removal of phosphate from aqueous solutions by red seaweed, Kappaphycus alverezii. J Clean Prod 2014;84:484–93.10.1016/j.jclepro.2014.03.064Suche in Google Scholar

177. He, P, Xu, S, Zhang, H, Wen, S, Dai, Y, Lin, S, et al. Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res 2008;42:1281–9. https://doi.org/10.1016/j.watres.2007.09.023.https://doi.org/10.1016/j.watres.2007.09.023Suche in Google Scholar PubMed

178. Tonon, AP, Zaini, PA, dos Reis Falcão, V, Oliveira, MC, Collén, J, Boyen, C, et al. Gracilaria tenuistipitata (Rhodophyta) tolerance to cadmium and copper exposure observed through gene expression and photosynthesis analyses. J Appl Phycol 2018;30:2129–41. https://doi.org/10.1007/s10811-017-1360-7.https://doi.org/10.1007/s10811-017-1360-7Suche in Google Scholar

179. Ye, J, Xiao, H, Xiao, B, Xu, W, Gao, L, Lin, G. Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticta. Water Sci Technol 2015;72:1662–6. https://doi.org/10.2166/wst.2015.386.https://doi.org/10.2166/wst.2015.386Suche in Google Scholar

180. Pulz, O, Gross, W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 2004;65:635–48. https://doi.org/10.1007/s00253-004-1647-x.https://doi.org/10.1007/s00253-004-1647-xSuche in Google Scholar

181. Borowitzka, MA. Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 1997;9:393. https://doi.org/10.1023/A:1007921728300.https://doi.org/10.1023/A:1007921728300Suche in Google Scholar

182. Rossano, R, Ungaro, N, D’Ambrosio, A, Liuzzi, G, Riccio, P. Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. J Biotechnol 2003;101:289–93. https://doi.org/10.1016/s0168-1656(03)00002-6.https://doi.org/10.1016/s0168-1656(03)00002-6Suche in Google Scholar

183. Arad, SM, Levy-Ontman, O. Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 2010;21:358–64. https://doi.org/10.1016/j.copbio.2010.02.008.https://doi.org/10.1016/j.copbio.2010.02.008Suche in Google Scholar

184. Dvir, I, Stark, AH, Chayoth, R, Madar, Z, Arad, SM. Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 2009;1:156–67. https://doi.org/10.3390/nu1020156.https://doi.org/10.3390/nu1020156Suche in Google Scholar

185. Sakamoto, H, Torada, H, Goto, K, Nakamura, Y, Nakano, T, Yamaguchi, T, et al. Biological activity of the polysaccharide produced by the marine phytoplankton Porphyridium sp. and additive effect of slag on the polysaccharide production. Tetsu-To-Hagane 2003;89:475–81. https://doi.org/10.2355/tetsutohagane1955.89.4_475.https://doi.org/10.2355/tetsutohagane1955.89.4_475Suche in Google Scholar

186. Geresh, S, Dawadi, R. Chemical modifications of biopolymers: quaternization of the extracellular polysaccharide of the red microalga Porphyridium sp. Carbohydr Polym 2000;43:75–80. https://doi.org/10.1016/s0144-8617(99)00194-0.https://doi.org/10.1016/s0144-8617(99)00194-0Suche in Google Scholar

187. Chu, W-L. Biotechnological applications of microalgae. IeJSME 2012;6:S24–37.10.56026/imu.6.Suppl1.S24Suche in Google Scholar

188. Priyadarshani, I, Rath, B. Commercial and industrial applications of micro algae–A review. J Algal Biomass Utln 2012;3:89–100.Suche in Google Scholar

189. Raja, R, Hemaiswarya, S, Kumar, NA, Sridhar, S, Rengasamy, R. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 2008;34:77–88. https://doi.org/10.1080/10408410802086783.https://doi.org/10.1080/10408410802086783Suche in Google Scholar PubMed

190. Spolaore, P, Joannis-Cassan, C, Duran, E, Isambert, A. Commercial applications of microalgae. J Biosci Bioeng 2006;101:87–96. https://doi.org/10.1263/jbb.101.87.https://doi.org/10.1263/jbb.101.87Suche in Google Scholar PubMed

191. Borowitzka, MA, Borowitzka, LJ, editors. Vitamins and fine chemicals from microalgae. In: Micro-algal biotechnology. Cambridge, UK: Cambridge University Press; 1988:173-96.Suche in Google Scholar

192. Becker, EW. Microalgae: biotechnology and microbiology. Cambridge, UK: Cambridge University Press; 1994.Suche in Google Scholar

193. Singh, S, Kate, BN, Banerjee, U. Bioactive compounds from cyanobacteria and microalgae: an overview. Critic Rev Biotechnol 2005;25:73–95. https://doi.org/10.1080/07388550500248498.https://doi.org/10.1080/07388550500248498Suche in Google Scholar PubMed

194. Milledge, JJ. Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 2011;10:31–41. https://doi.org/10.1007/s11157-010-9214-7.https://doi.org/10.1007/s11157-010-9214-7Suche in Google Scholar

195. Ramus, J. The production of extracellular polysaccharide by the unicellular red alga Porphyridium aerugineum 1, 2. J Phycol 1972;8:97–111. https://doi.org/10.1111/j.0022-3646.1972.00097.x.https://doi.org/10.1111/j.0022-3646.1972.00097.xSuche in Google Scholar

196. Castro, L, Blázquez, ML, Muñoz, JA, González, F, Ballester, A. Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 2013;7:109–16. https://doi.org/10.1049/iet-nbt.2012.0041.https://doi.org/10.1049/iet-nbt.2012.0041Suche in Google Scholar PubMed

197. Sharma, B, Purkayastha, DD, Hazra, S, Thajamanbi, M, Bhattacharjee, CR, Ghosh, NN, et al. Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C. Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioproc Biosyst Eng 2014;37:2559–65. https://doi.org/10.1007/s00449-014-1233-2.https://doi.org/10.1007/s00449-014-1233-2Suche in Google Scholar PubMed

198. Li, L, Ni, R, Shao, Y, Mao, S. Carrageenan and its applications in drug delivery. Carbohydr Polym 2014;103:1–11. https://doi.org/10.1016/j.carbpol.2013.12.008.https://doi.org/10.1016/j.carbpol.2013.12.008Suche in Google Scholar PubMed

199. Briones, AV, Sato, T. Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan–carrageenan. React Funct Polym 2010;70:19–27. https://doi.org/10.1016/j.reactfunctpolym.2009.09.009.https://doi.org/10.1016/j.reactfunctpolym.2009.09.009Suche in Google Scholar

200. Chen, X, Han, W, Zhao, X, Tang, W, Wang, F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci Rep 2019;9:6754. https://doi.org/10.1038/s41598-019-43106-9.https://doi.org/10.1038/s41598-019-43106-9Suche in Google Scholar PubMed PubMed Central

201. Tomoda, K, Asahiyama, M, Ohtsuki, E, Nakajima, T, Terada, H, Kanebako, M, et al. Preparation and properties of carrageenan microspheres containing allopurinol and local anesthetic agents for the treatment of oral mucositis. Colloids Surf B Biointerfaces 2009;71:27–35. https://doi.org/10.1016/j.colsurfb.2009.01.003.https://doi.org/10.1016/j.colsurfb.2009.01.003Suche in Google Scholar PubMed

202. Bonferoni, MC, Chetoni, P, Giunchedi, P, Rossi, S, Ferrari, F, Burgalassi, S, et al. Carrageenan–gelatin mucoadhesive systems for ion-exchange based ophthalmic delivery: in vitro and preliminary in vivo studies. Eur J Pharm Biopharm 2004;57:465–72. https://doi.org/10.1016/j.ejpb.2003.12.002.https://doi.org/10.1016/j.ejpb.2003.12.002Suche in Google Scholar PubMed

203. Liu, Y, Zhu, Y-Y, Wei, G, Lu, W-Y. Effect of carrageenan on poloxamer-based in situ gel for vaginal use: Improved in vitro and in vivo sustained-release properties. Eur J Pharmaceut Sci 2009;37:306–12. https://doi.org/10.1016/j.ejps.2009.02.022.https://doi.org/10.1016/j.ejps.2009.02.022Suche in Google Scholar PubMed

204. Boateng, JS, Pawar, HV, Tetteh, J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 2013;441:181–91. https://doi.org/10.1016/j.ijpharm.2012.11.045.https://doi.org/10.1016/j.ijpharm.2012.11.045Suche in Google Scholar PubMed

205. Rocha, PM, Santo, VE, Gomes, ME, Reis, RL, Mano, JF. Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioact Compat Polym 2011;26:493–507. https://doi.org/10.1177/0883911511420700.https://doi.org/10.1177/0883911511420700Suche in Google Scholar

206. Popa, E, Reis, R, Gomes, M. Chondrogenic phenotype of different cells encapsulated in κ‐carrageenan hydrogels for cartilage regeneration strategies. Biotechnol Appl Biochem 2012;59:132–41. https://doi.org/10.1002/bab.1007.https://doi.org/10.1002/bab.1007Suche in Google Scholar PubMed

207. Araki, C, editor. Some recent studies on the polysaccharides of agarophytes. In: Proceedings of the fifth international seaweed symposium, Halifax, August 25–28, 1965: Amsterdam: Elsevier; 1966confproc.10.1016/B978-0-08-011841-3.50007-0Suche in Google Scholar

208. Laurienzo, P. Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 2010;8:2435–65. https://doi.org/10.3390/md8092435.https://doi.org/10.3390/md8092435Suche in Google Scholar PubMed PubMed Central

209. Blouin, NA, Brodie, JA, Grossman, AC, Xu, P, Brawley, SH. Porphyra: a marine crop shaped by stress. Trends Plant Sci 2011;16:29–37. https://doi.org/10.1016/j.tplants.2010.10.004.https://doi.org/10.1016/j.tplants.2010.10.004Suche in Google Scholar PubMed

210. Guiry, M. Seaweed site. World-Wide Electronic Publication. Galway: National University of Ireland; 2008.Suche in Google Scholar

211. Reddy, C, Gupta, V, Jha, B. Developments in biotechnology of red algae. Red algae in the genomic age. Berlin: Springer; 2010. 307–41 p.10.1007/978-90-481-3795-4_17Suche in Google Scholar

212. Webber, V, de Carvalho, SM, Barreto, PLM. Molecular and rheological characterization of carrageenan solutions extracted from Kappaphycus alvarezii. Carbohydr Polym 2012;90:1744–9. https://doi.org/10.1016/j.carbpol.2012.07.063.https://doi.org/10.1016/j.carbpol.2012.07.063Suche in Google Scholar PubMed

Received: 2019-08-13
Accepted: 2019-11-26
Published Online: 2020-07-22

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Reviews
  2. Music in the workplace: A narrative literature review of intervention studies
  3. Vitamin C supplementation and C-reactive protein levels: Findings from a systematic review and meta-analysis of clinical trials
  4. An overview on red algae bioactive compounds and their pharmaceutical applications
  5. RA-Experimental
  6. Phenolic composition and antioxidant capacity of hawthorn (Crataegus oxyacantha L.) flowers and fruits grown in Algeria
  7. Identification of bioactive constituents in Coldenia procumbens L. and its antidiabetic activity against streptozotocin induced Wistar albino rats
  8. 10-gingerol induces oxidative stress through HTR1A in cumulus cells: in-vitro and in-silico studies
  9. Evaluation of subacute toxicity and herb–drug interaction potential of an herbal Arishta formulation
  10. Modulatory effect of Polyalthia longifolia leaves against cadmium-induced oxidative stress and hepatotoxicity in rats
  11. Can measurements be physically conditioned by thought? Further observations following a focused intention experiment
  12. The cytotoxic activity of Salvia officinalis L. and Rosmarinus officinalis L. Leaves extracts on human glioblastoma cell line and their antioxidant effect
  13. Curculigo pilosa mitigates against oxidative stress and structural derangements in pancreas and kidney of streptozotocin-induced diabetic rats
  14. Interspecific variability of 1,8-cineole content, phenolics and bioactivity among nine Eucalyptus taxa growing under the sub-humid bioclimate stage
  15. RA-Clinical
  16. Ethnobotanical survey of three members of family Lamiaceae among the inhabitants of Bejaia, Northern Algeria
  17. Effectiveness of video game on bio- physiological parameters during intravenous cannulation among preschool children
  18. Could Anise decrease the intensity of premenstrual syndrome symptoms in comparison to placebo? A double-blind randomized clinical trial
  19. Epigenetic study of global gene methylation in PON1, XRCC1 and GSTs different genotypes in rural and urban pesticide exposed workers
  20. Effect of yoga practices on general mental ability in urban residential school children
  21. Perceptions and utilization of traditional healing among Marshallese adults residing in Arkansas
  22. Effectiveness of neurobic exercise program on memory and depression among elderly residing at old age home
  23. Does soft tissue mobilization assist static stretching to improve hamstring flexibility? A randomized controlled trial
  24. Letter to the Editor
  25. Hot arm and foot bath on heart rate variability and blood pressure in healthy volunteers – needs to be verified with standard device?
Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jcim-2019-0203/html
Button zum nach oben scrollen