Startseite Cornus mas: a review on traditional uses and pharmacological properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cornus mas: a review on traditional uses and pharmacological properties

  • Fatemeh Hosseinpour-Jaghdani , Tahoora Shomali , Sajedeh Gholipour-Shahraki , Mohammad Rahimi-Madiseh und Mahmoud Rafieian-Kopaei EMAIL logo
Veröffentlicht/Copyright: 31. März 2017

Abstract

Medicinal plants that are used today have been known by people of ancient cultures around the world and have largely been considered due to their medicinal properties. Cornus mas L. (Cornelian cherry) is one of these medicinal plants with high level of antioxidant activity. Cornelian cherry is an attractive ornamental plant with delicious fruit having nutritional and therapeutic values. The main purpose of this paper is to present and summarize the pharmacological and therapeutic effects from researches done on Cornelian cherry in studies from 2000 to 2016. Information and findings in this review were taken from electronic journals in some websites including PubMed, Elsevier, ISI, Google scholar, SID and relevant books. C. mas L. is important in terms of decoration and is used in traditional medicine to treat diarrhea, inflammatory bowel disease, cholera, fever, malaria, kidney stones, urinary tract infections, cancer, bleeding and heat stroke. Several studies have shown that Cornelian cherry fruit plays an important role in prevention of atherosclerosis, blood sugar, lipid profiles and reduction of fat accumulation in the liver. Cornelian cherry has antimicrobial, antiparasitic, anti-inflammatory, antioxidant and anticancer effects as well as protecting liver, kidney and cardiovascular system. Using Cornelian cherry in pharmaceutical and food industries has caused fantastic value of this plant. Pharmaceutical properties of Cornelian cherry seeds, fruits, leaves and stems have led the need of further studies to explore the other unknown effects or review mechanism of its pharmacological effects for preparation of new drugs.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report or in the decision to submit the report for publication.

References

1. Hosseinzadeh B, Khoshtaghaza M, Minaei S, Abbasi S. Modeling the simultaneous effects of microwave and ultrasound treatments on sour cherry juice using response surface methodology. J Agric Sci Technol. 2015;17:837–846.Suche in Google Scholar

2. Hajian S. Positive effect of antioxidants on immune system. Immunopathol Persa. 2015;1:e02.Suche in Google Scholar

3. Nasri H. Herbal drugs and new concepts on its use. J Prev Epidemiol. 2016;1:e01.Suche in Google Scholar

4. Lorigooini Z, Kobarfard F, Ayatollahi SA. Anti-platelet aggregation assay and chemical composition of essential oil from Allium atroviolaceum Boiss growing in Iran. Int J Biosci. 2014;5:151–156.10.12692/ijb/5.2.151-156Suche in Google Scholar

5. Lorigooini Z, Ayatollahi SA, Amidi S, Kobarfard F. Evaluation of anti-platelet aggregation effect of some Allium species. Iran J Pharm Res. 2015;14:1225–1231.Suche in Google Scholar

6. Fasihzadeh S, Lorigooini Z, Jivad N. Chemical constituents of Allium stipitatum regel (persian shallot) essential oil. Der Pharm Lett. 2016;8:175–180.Suche in Google Scholar

7. Ghasemi S, Lorigooini Z. A review of significant molecular mechanisms of flavonoids in prevention of prostate cancer. J Chem Pharm Sci. 2016;9:3388–3394.Suche in Google Scholar

8. Rabiei Z, Bigdeli M, Lorigooini Z. A review of medicinal herbs with antioxidant properties in the treatment of cerebral ischemia and reperfusion. J Babol Univ Med Sci. 2015;17:45–76.Suche in Google Scholar

9. Samani BH, Khoshtaghaza MH, Lorigooini Z, Minaei S, Zareiforoush H. Analysis of the combinative effect of ultrasound and microwave power on Saccharomyces cerevisiae in orange juice processing. Innovative Food Sci Emerging Technol. 2015;32:110–115.10.1016/j.ifset.2015.09.015Suche in Google Scholar

10. Zomorodian K, Moein M, Lori ZG, Ghasemi Y, Rahimi MJ, Bandegani A, et al. Chemical composition and antimicrobial activities of the essential oil from Myrtus communis leaves. J Essent Oil Bear Plants. 2013;16:76–84.10.1080/0972060X.2013.764183Suche in Google Scholar

11. Samani BH, Zareiforoush H, Lorigooini Z, Ghobadian B, Rostami S, Fayyazi E. Ultrasonic-assisted production of biodiesel from Pistacia atlantica Desf. oil. Fuel. 2016;168:22–26.10.1016/j.fuel.2015.11.063Suche in Google Scholar

12. Rabiei Z, Lorigooini Z, Kopaei MR. Effects of hydroalcoholic extract of Borago officinalis on naloxone-precipitated withdrawal syndrome in morphine-dependent mice. Bangl J Pharmacol. 2016;11:824–829.10.3329/bjp.v11i4.26915Suche in Google Scholar

13. Shirneshan A, Hosseinzadeh B, Ghobadian B. Optimization of biodiesel percentage in fuel mixture and engine operating conditions for diesel engine performance and emission characteristics by Artificial Bees Colony Algorithm. Fuel. 2016;184:518–526.10.1016/j.fuel.2016.06.117Suche in Google Scholar

14. Zareiforoush H, Minaei S, Alizadeh M, Banakar A, Hosseinzadeh B. Design, development and performance evaluation of an automatic control system for rice whitening machine based on computer vision and fuzzy logic. Comput Electron Agr. 2016;124:14–22.10.1016/j.compag.2016.01.024Suche in Google Scholar

15. Baradaran A. Administration of herbal drugs in geriatric individuals; trends on its helps and hazards. Geriatr Persia. 2017;1:e01.Suche in Google Scholar

16. Esehaghbeygi A, Hoseinzadeh B, Masoumi AA. Effects of moisture content and urea fertilizer on bending and shearing properties of canola stem. Appl Eng Agric. 2009;25:947–951.10.13031/2013.29225Suche in Google Scholar

17. Nasri H. Herbal drugs; from molecular studies to bedside investigations. Aria J Front Biochem. 2017;2:e01.Suche in Google Scholar

18. Raeisi E, Shahbazi-Gahrouei D, Heidarian E. Pineapple extract as an efficient anticancer agent in treating human cancer cells. Front Cancers. 2016;1:e03.Suche in Google Scholar

19. Baradaran A. Herbal antioxidant to ameliorate vascular biology. Angiol Persica Acta. 2017;2:e01.Suche in Google Scholar

20. Kafeshani M. Ginger, micro-inflammation and kidney disease. J Renal Endocrinol. 2015;1:e04.Suche in Google Scholar

21. Khosravi-Boroujeni H, Mohammadifard N, Sarrafzadegan N, Sajjadi F, Maghroun M, Khosravi A, et al. Potato consumption and cardiovascular disease risk factors among Iranian population. Int J Food Sci Nutr. 2012;63:913–920.10.3109/09637486.2012.690024Suche in Google Scholar PubMed

22. Dehghan Shahreza F. Hibiscus esculentus and diabetes mellitus. J Nephropharmacol. 2016;5:104–105.Suche in Google Scholar

23. Amiri M, Hosseini SM. Diabetes mellitus type 1; is it a global challenge. Acta Epidemioendocrinol. 2016;1:e02.Suche in Google Scholar

24. Bahmani M, Asadi-Samani M. Native medicinal plants of Iran effective on peptic ulcer. J Inj Inflamm. 2016;1:e05.Suche in Google Scholar

25. Nasri P. Cancers and herbal antioxidants. Front Biomark. 2017;2:e01.Suche in Google Scholar

26. Ercisli S. A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol. 2004;51:419–435.10.1023/B:GRES.0000023458.60138.79Suche in Google Scholar

27. Asgary S, Kelishadi R, Rafieian-Kopaei M, Najafi S, Najafi M, Sahebkar A. Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr Cardiol. 2013;34:1729–1735.10.1007/s00246-013-0693-5Suche in Google Scholar PubMed

28. Asgary S, Rafieian-Kopaei M, Shamsi F, Najafi S, Sahebkar A. Biochemical and histopathological study of the anti-hyperglycemic and anti-hyperlipidemic effects of cornelian cherry (Cornus mas L.) in alloxan-induced diabetic rats. J Complement Integr Med. 2014;11:63–69.10.1515/jcim-2013-0022Suche in Google Scholar PubMed

29. Brindza P, Brindza J, Toth D, Klimenko S, Grigorieva O.. editors. Slovakian Cornelian cherry (Cornus mas L.): Potential for cultivation. XXVII International Horticultural Congress-IHC2006: II International Symposium on Plant Genetic Resources of Horticultural 760, 2006.10.17660/ActaHortic.2007.760.59Suche in Google Scholar

30. Hassanpour H, Yousef H, Jafar H, Mohammad A. Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci Hortic. 2011;129:459–463.10.1016/j.scienta.2011.04.017Suche in Google Scholar

31. Deng S, West BJ, Jensen CJ. UPLC-TOF-MS characterization and identification of bioactive iridoids in Cornus mas fruit. J Anal Methods Chem 2013. Epub ahead of print 20 August 2013. DOI:10.1155/2013/710972.Suche in Google Scholar PubMed PubMed Central

32. Rudrapaul P, Kyriakopoulos AM, De UC, Zoumpourlis V, Dinda B. New flavonoids from the fruits of Cornus mas, Cornaceae. Phytochem Lett. 2015;11:292–295.10.1016/j.phytol.2015.01.011Suche in Google Scholar

33. Behrangi N, Ghafoori H, Farahmand Z, Khani EM, Sanati MH. Comparison among cornelian cherry and prunus cerasus according to phenolic content and antioxidant capacity by three various methods of extraction. Food Nutr Sci. 2015;6:1166–1173.10.4236/fns.2015.612122Suche in Google Scholar

34. Yilmaz KU, Ercisli S, Zengin Y, Sengul M, Kafkas EY. Preliminary characterisation of Cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem. 2009;114:408–412.10.1016/j.foodchem.2008.09.055Suche in Google Scholar

35. Jayaprakasam B, Vareed SK, Olson LK, Nair MG. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem. 2005;53:28–31.10.1021/jf049018+Suche in Google Scholar PubMed

36. Webber T, Watson A. The libraries of the Augustinian Canons, Corpus of British Medieval Library Catalogues. London: British Library in association with the British Academy, 1998.Suche in Google Scholar

37. Sakurai T, He G, Matsuzawa A, Yu G-Y, Maeda S, Hardiman G, et al. Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 2008;14:156–165.10.1016/j.ccr.2008.06.016Suche in Google Scholar PubMed PubMed Central

38. Damirov I, Prilipko L, Shukurov D, Kerimov Y. Medicinal plants of Azerbaijan. Baku: Pub h” Maarif, 1988:319.Suche in Google Scholar

39. Sokolov S, Zamotayev I. Directory of Medicinal Plants. Medicina. Moscow (in Russian): 1985. Vol 1. MoscowSuche in Google Scholar

40. Polinicencu C, Popescu H, Nistor C. Vegetal extracts for cosmetic use: 1. Extracts from fruits of Cornus mas. Preparation and characterization. Clujul Med. 1980;53:160–163.Suche in Google Scholar

41. Baradaran A. Concepts towards endothelial dysfunction in diabetes mellitus. Angiol Persica Acta. 2016;1:e02.Suche in Google Scholar

42. Dehghan Shahreza F. From oxidative stress to endothelial cell dysfunction. J Prev Epidemiol. 2016;1:e04.Suche in Google Scholar

43. Baradaran A. A short look to the nephroprotective impacts of metformin. Toxicol Persa. 2016;1:e01.Suche in Google Scholar

44. Lala MA, Nazar CMJ, Lala HA, Singh JK. Interrelation between blood pressure and diabetes. J Renal Endocrinol. 2015;1:e05.Suche in Google Scholar

45. Dehghan Shahreza F. Mechanistic impact of renal tubular cell protection by antioxidants. Ann Res Antioxid. 2016;1:e11.10.15171/ipp.2017.03Suche in Google Scholar

46. Nasri H. World diabetes day; 2016. Aria J Front Biochem. 2016;1:e01.Suche in Google Scholar

47. Tavafi M, Hasanvand A, Ashoory H. Proximal convoluted tubule cells in ischemia and post-injury regeneration. Acta Persica Pathophysiol. 2016;1:e05.Suche in Google Scholar

48. Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem. 2001;49:1948–1951.10.1021/jf001251uSuche in Google Scholar PubMed

49. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76:560–568.10.1093/ajcn/76.3.560Suche in Google Scholar PubMed

50. Lo CY, Li S, Tan D, Pan MH, Sang S, Ho CT. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Mol Nutr Food Res. 2006;50:1118–1128.10.1002/mnfr.200600094Suche in Google Scholar PubMed

51. Gorji A, Soltani R, Keshvari M, Ghanadian M, Asgary S, Sarafzadegan N. The effects of cranberry on glucose levels and HbA1C with type 2 diabetes patients-a randomized clinical trial. J Shahrekord Univ Med Sci. 2014;16:115–122.10.1155/2014/217451Suche in Google Scholar

52. Sarikaphuti A, Nararatwanchai T, Hashiguchi T, Ito T, Thaworanunta S, Kikuchi K, et al. Preventive effects of Morus alba L. anthocyanins on diabetes in Zucker diabetic fatty rats. Exp Ther Med. 2013;6:689–695.10.3892/etm.2013.1203Suche in Google Scholar PubMed PubMed Central

53. Jayaprakasam B, Olson LK, Schutzki RE, Tai M-H, Nair MG. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem. 2006;54:243–248.10.1021/jf0520342Suche in Google Scholar PubMed

54. Jayaprakasam B, Strasburg GA, Nair MG. Potent lipid peroxidation inhibitors from Withania somnifera fruits. Tetrahedron. 2004;60:3109–3121.10.1016/j.tet.2004.01.016Suche in Google Scholar

55. Mirbadalzadeh R, Shirdel Z. Anti-diabetic and anti-hyperlipidemic effect of alcoholic extract of Cornelian cherry in diabetic mice compared with glibenclamide. Iran J Diabetes Lipid Disord. 2010;9:335–343.Suche in Google Scholar

56. Soltani R, Gorji A, Asgary S, Sarrafzadegan N, Siavash M. Evaluation of the effects of Cornus mas L. fruit extract on glycemic control and insulin level in type 2 diabetic adult patients: A randomized double-blind placebo-controlled clinical trial. J Evidence-Based Complement Altern Med 2015. Epub ahead of print 11 February 2015. . DOI:10.1155/2015/740954.Suche in Google Scholar PubMed PubMed Central

57. Zhang W, Hong D, Zhou Y, Zhang Y, Shen Q, Li J-Y, et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim Biophys Acta. 2006;1760:1505–1512.10.1016/j.bbagen.2006.05.009Suche in Google Scholar PubMed

58. Shishehbor F, Azemi ME, Zameni D, Saki A. Inhibitory effect of hydroalcoholic extracts of barberry, sour cherry and Cornelian Cherry on α-amylase and α-Glucosidase activities. Int J Pharm Res Allied Sci. 2016;5:423–428.Suche in Google Scholar

59. Sarrafzadegan N, Khosravi-Boroujeni H, Sadeghi M. The association between hypertriglyceridemic waist phenotype, menopause, and cardiovascular risk factors. Arch Iran Med. 2013;16:161–166.Suche in Google Scholar

60. Rafieian-Kopaei M, Asgary S, Adelnia A, Setorki M, Khazaei M, Kazemi S, et al. The effects of cornelian cherry on atherosclerosis and atherogenic factors in hypercholesterolemic rabbits. J Med Plants Res. 2011;5:2670–2676.Suche in Google Scholar

61. Sozanski T, Kucharska AZ, Szumny A, Magdalan J, Bielska K, Merwid-Lad A, et al. The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPARalpha activation in hypercholesterolemic rabbits. Phytomedicine. 2014;21:1774–1784.10.1016/j.phymed.2014.09.005Suche in Google Scholar PubMed

62. Sozański T, Kucharska AZ, Rapak A, Szumny D, Trocha M, Merwid-Ląd A, et al. Iridoid–loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis. 2016;254:151–160.10.1016/j.atherosclerosis.2016.10.001Suche in Google Scholar

63. Lila MA. Anthocyanins and human health: an in vitro investigative approach. Biomed Research International. 2004;2004:306–313.10.1155/S111072430440401XSuche in Google Scholar

64. Borradaile NM, De Dreu LE, Barrett PHR, Huff MW. Inhibition of hepatocyte apoB secretion by naringenin enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res. 2002;43:1544–1554.10.1194/jlr.M200115-JLR200Suche in Google Scholar

65. Lotfi A, Shahryar HA, Rasoolian H, Branch S. Effect of cornelian cherry (cornus mas L.) fruit on plasma lipids, cortisol, T3 and T4 levels in hamsters. J Anim Plant Sci. 2014;24:459–462.Suche in Google Scholar

66. Tonon RV, Brabet C, Hubinger MD. Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Res Int. 2010;43:907–914.10.1016/j.foodres.2009.12.013Suche in Google Scholar

67. Celep E, Aydın A, Yesilada E. A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food Chem Toxicol. 2012;50:3329–3335.10.1016/j.fct.2012.06.010Suche in Google Scholar

68. Mazza G, Kay CD, Cottrell T, Holub BJ. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem. 2002;50:7731–7737.10.1021/jf020690lSuche in Google Scholar

69. Somi MH, Banihabib N, Dehghan G, Haghi ME, Panahi F. Hepatoprotective effect of Cornus mas fruits extract against carbon tetrachloride-induced hepatic damage in male albino rats. Thrita. 2014;3 . Epub ahead of print 1 May 2014. DOI: 10.5812/thrita.17624.10.5812/thrita.17624Suche in Google Scholar

70. Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci. 2005;70:11–19.10.1111/j.1365-2621.2005.tb09053.xSuche in Google Scholar

71. Zarei L, Sadrkhanlou R, Shahrooz R, Malekinejad H, Eilkhanizadeh B, Ahmadi A. editors. Protective effects of vitamin E and Cornus mas fruit extract on methotrexate-induced cytotoxicity in sperms of adult mice. Vet Res Forum. 2014;5:21–27.Suche in Google Scholar

72. Safari M-R, Sheikh N. Effects of flavonoids on the susceptibility of low-density lipoprotein to oxidative modification. Prostaglandins Leukot Essent Fatty Acids. 2003;69:73–77.10.1016/S0952-3278(03)00085-1Suche in Google Scholar

73. Di Santo E, Alonzi T, Poli V, Fattori E, Toniatti C, Sironi M, et al. Differential effects of IL-6 on systemic and central production of TNF: A study with IL-6-deficient mice. Cytokine. 1997;9:300–306.10.1006/cyto.1996.0169Suche in Google Scholar PubMed

74. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83:456–460.10.1093/ajcn/83.2.456SSuche in Google Scholar PubMed

75. Kelishadi R, Gidding SS, Hashemi M, Hashemipour M, Zakerameli A, Poursafa P. Acute and long term effects of grape and pomegranate juice consumption on endothelial dysfunction in pediatric metabolic syndrome. J Res Med Sci. 2011;16:245–253.Suche in Google Scholar

76. Moldovan B, Filip A, Clichici S, Suharoschi R, Bolfa P, David L. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. J Funct Foods. 2016;26:77–87.10.1016/j.jff.2016.07.004Suche in Google Scholar

77. Rafiean-Kopaei M, Baradaran A, Maghsoudi A-R, Ghobadi S, Nasri H. Helicobacter pylori infection and serum homocysteine in hemodialysis patient. Life Sci J. 2012;9:3696–3702.Suche in Google Scholar

78. Sharafati-Chaleshtori R, Sharafati-Chaleshtori F, Rafieian M. Biological characterization of Iranian walnut (Juglans regia) leaves. Turk J Biol. 2011;35:635–639.10.3906/biy-1005-1Suche in Google Scholar

79. Barfar Y, Khoramruz S, Gerami M, Bahrebar M.. The antibacterial activity of hydroalcoholic extract of rhubarb on Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. The first National Congress on Biology and Natural Sciences Iran, 2014;1–6.Suche in Google Scholar

80. Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, et al. Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol. 2001;90:494–507.10.1046/j.1365-2672.2001.01271.xSuche in Google Scholar PubMed

81. Milenković-Anđelković AS, Anđelković MZ, Radovanović AN, Radovanović BC, Nikolić V. Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Hem Ind. 2015;69:331–337.10.2298/HEMIND140216046MSuche in Google Scholar

82. Rajaei M, Hafizi M, Norian K. [Persian].. Effect of cornus mas juice on bacteriuria and pyuria in spinal cord injury patients with neurogenic bladder. Journal of Armaghane Danesh. 2014;19:662–674.Suche in Google Scholar

83. Turker AU, Yildirim AB, Karakas FP. Antibacterial and antitumor activities of some wild fruits grown in Turkey. Biotechnol Biotechnol Equip. 2012;26:2765–2772.10.5504/BBEQ.2011.0156Suche in Google Scholar

84. Radovanović BC, Anđelković S, Radovanović AB, Anđelković MZ. Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in southeast Serbia. Trop J Pharm Res. 2013;12:813–819.10.4314/tjpr.v12i5.23Suche in Google Scholar

85. Krisch J, Galgóczy L, Tölgyesi M, Papp T, Vágvölgyi C. Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta Biol Szeged. 2008;52:267–270.Suche in Google Scholar

86. Dadkhah N, Shirani M, Etemadifar S, Mirtalebi M. The effect of Cornus mas in preventing recurrent urinary tract infections in women: A randomized controlled trial. Adv Herb Med. 2016;2:39–46.Suche in Google Scholar

87. Abdollahi B, Abbasi MM, Milani PZ, Nourdadgar AS, Khojasteh SMB, Nejati V. Hydro-methanolic extract of Cornus mas L. and blood glucose, lipid profile and hematological parameters of male rats. Iran Red Crescent Med J. 2014;16 . Epub ahead of print 5 May 2014. DOI: 10.5812/ircmj.17784.10.5812/ircmj.17784Suche in Google Scholar PubMed PubMed Central

88. Badalica-Petrescu M, Dragan S, Ranga F, Fetea F, Socaciu C. Comparative HPLC-DAD-ESI (+) MS fingerprint and quantification of phenolic and flavonoid composition of aqueous leaf extracts of Cornus mas and Crataegus monogyna, in relation to their cardiotonic potential. Not Bot Horti Agrobot Cluj-Napoca. 2014;42:9–18.10.15835/nbha4219270Suche in Google Scholar

89. Asgary S, Rafieian-Kopaei M, Adelnia A, Kazemi S, Shamsi F. Comparing the effects of lovastatin and cornus mas fruit on fibrinogen level in hypercholesterolemic rabbits. Arya Atheroscler. 2010;6:1–5.Suche in Google Scholar

90. Alavian SM, Banihabib N, Haghi E, Panahi F. Protective effect of Cornus mas fruits extract on serum biomarkers in CCl4-induced hepatotoxicity in male rats. Hepat Mon. 2014;14 . Epub ahead of print 14 April 2014. DOI: 10.5812/hepatmon.10330.10.5812/hepatmon.10330Suche in Google Scholar PubMed PubMed Central

91. Abbasi MM, Abdollahi B, Milani PZ, Mohajeri D, Nourdadgar AS. Effects of hydro-methanolic extract of cornus mas on histopathological and biochemical parameters of rats’ liver and kidney. Bothalia J. 2014;44:250–259.Suche in Google Scholar

92. Thabrew MI, Joice PD, Rajatissa W. A comparative study of the efficacy of Pavetta indica and Osbeckia octandra in the treatment of liver dysfunction. Planta Med. 1987;53:239–241.10.1055/s-2006-962691Suche in Google Scholar PubMed

93. Saei H, Hatami H, Azarmi M, Dehghan G. Hepatoprotective effect of cornus mas fruits extract on serum biomarkers in methotrexate-induced liver injury in male rats. Pharmacologyonline. 2016;1:91–98.Suche in Google Scholar

94. Eshaghi M, Dehghan G, Banihabib N, Zare S, Mikaili P, Panahi F. Protective effects of Cornus mas fruit extract on carbon tetrachloride induced nephrotoxicity in rats. Indian J Nephrol. 2014;24:291–296.10.4103/0971-4065.133000Suche in Google Scholar PubMed PubMed Central

95. Mehrabi M, Sadraie J, Ghaffarifar F. Comparative study of the effect of garlic tablet and blueberry extract on Cryptosporidum parvum oocysts in HANK solution. Sci J Kurdistan Univ Med Sci. 2012;17:53–60.Suche in Google Scholar

96. Rezaei F, Shokrzadeh M, Majd A, Nezhadsattari T. Cytotoxic effect of hydroalcoholic extract of Cornus mas L. fruit on MCF7, HepG2 and CHO cell line by MTTAssay. J Mazandaran Univ Med Sci. 2014;24:130–138.Suche in Google Scholar

97. Šavikin K, Zdunić G, Janković T, Stanojković T, Juranić Z, Menković N. In vitro cytotoxic and antioxidative activity of Cornus mas and Cotinus coggygria. Nat Prod Res. 2009;23:1731–1739.10.1080/14786410802267650Suche in Google Scholar PubMed

98. Yousefi B, Abasi M, Abbasi MM, Jahanban-Esfahlan R. Anti-proliferative properties of Cornus mass fruit in different human cancer cells. Asian Pac J Cancer Prev. 2015;16:5727–5731.10.7314/APJCP.2015.16.14.5727Suche in Google Scholar

99. Kang DG, Choi DH, Lee JK, Lee YJ, Moon MK, Yang SN, et al. Endothelial NO/cGMP-dependent vascular relaxation of cornuside isolated from the fruit of Cornus officinalis. Planta Med. 2007;73:1436–1440.10.1055/s-2007-990243Suche in Google Scholar PubMed

100. Darbandi N, Hashemi A, Noori M, Momeni HR. Effect of Cornus mas fruit flavonoids on memory retention, level of plasma glucose and lipids in an intra-cerebroventricular streptozotocin-induced experimental Alzheimer’s disease model in Wistar rats. Environ Exp Bot. 2016;14:113–120.10.22364/eeb.14.16Suche in Google Scholar

101. Nasri H. Aggravating role of inflammation in diabetic kidney disease. J Inj Inflamm. 2016;1:e03.Suche in Google Scholar

Received: 2016-11-3
Accepted: 2017-1-9
Published Online: 2017-3-31

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jcim-2016-0137/html?lang=de
Button zum nach oben scrollen