Startseite Naturwissenschaften Catalytic Degradation of Safranin T in Aqueous Medium Using Non-conventional Processes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Catalytic Degradation of Safranin T in Aqueous Medium Using Non-conventional Processes

  • V. Sydorchuk EMAIL logo , S. Khalameida , B. Charmas , J. Skubiszewska-Zięba , V. Zazhigalov und L. Davydenko
Veröffentlicht/Copyright: 3. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Eleven TiO2 powders as catalysts have been studied in process of safranin T degradation in aqueous medium using mechanochemical, microwave and ultrasonic techniques. The degree of degradation has been controlled by means of spectrophotometric analysis of safranin T solutions before and after treatment and total organic carbon measurements. XRD, DTA-TG and BET analysis, FTIR spectroscopy and mass spectrometry of initial and spent catalysts have been carried out for explanation of obtained results. It has been established that the catalytic activity of TiO2 under mechanochemical treatment depends on phase composition and dispersity (specific surface area). Particularly, catalytic activity of mono-phase titanias inversely depends on specific surface area of initial catalyst. Sono- and microwave catalytic degradation were less effective.

References

1. Hoffman NR, Martin ST, Choi W, Bahneman DW. Chem Rev. 1995;95:69–96.10.1021/cr00033a004Suche in Google Scholar

2. Carp O, Huisman CL, Reller A. Progr Solid State Chem. 2004;32:33–177.10.1016/j.progsolidstchem.2004.08.001Suche in Google Scholar

3. Lavand AB, Malghe YS. J Therm Anal Calorim. 2016;123:1163–1172.10.1007/s10973-015-5041-ySuche in Google Scholar

4. Adewuyi YG. Environ Sci Technol. 2005;39:3409–3420.10.1021/es049138ySuche in Google Scholar

5. Bruckman A, Krebs A, Bolm C. Green Chem. 2008;10:1131–1141.10.1039/b812536hSuche in Google Scholar

6. Adewuyi YG. Environ Sci Technol. 2005;39:8557–8570.10.1021/es0509127Suche in Google Scholar

7. Gonzalez-Garcia J, Saez V, Tudela I, Diez-Garcia MI, Esclapez MD, Louisnard O. Water. 2010;2:28–74.10.3390/w2010028Suche in Google Scholar

8. Cotto MC, Emiliano A, Nieto S, Duconge J, Roque-Malherbe R. J Colloid Interface Sci. 2009;339:133–139.10.1016/j.jcis.2009.07.016Suche in Google Scholar

9. Kaupp G. CrystEngComm. 2009;11:388–403.10.1039/B810822FSuche in Google Scholar

10. Ting-Nien W. Pract Period Hazard Toxic Radioactive Waste Manage. 2008;12:102–115.10.1061/(ASCE)1090-025X(2008)12:2(102)Suche in Google Scholar

11. Horikoshi S, Sakai F, Kajitani M, Abe M, Emeline AV, Serpone N. J Phys Chem C. 2009;113:5649–5657.10.1021/jp810002zSuche in Google Scholar

12. Adewuyi YG. Ind Eng Chem Res. 2001;40:4681–4715.10.1021/ie010096lSuche in Google Scholar

13. Wieczorek-Ciurowa K, Gamrat K. J Therm Anal Calorim. 2007;88:213–217.10.1007/s10973-006-8098-9Suche in Google Scholar

14. Indris S, Amade R, Heitjans P, Finger M, Haeger A, Hesse D,et al. J Phys Chem B. 2005;109:23274–23278.10.1021/jp054586tSuche in Google Scholar PubMed

15. Khalameida S, Sydorchuk V, Skubiszewska-Zięba J, Leboda R, Zazhigalov V. J Therm Anal Calorim. 2010;101:779–784.10.1007/s10973-010-0755-3Suche in Google Scholar

16. Khalameida S, Sidorchuk V, Zazhigalov V, Mironyuk T. Russ J Appl Chem. 2010;83:1799–1803.10.1134/S1070427210100125Suche in Google Scholar

17. Khalameida S, Sydorchuk V, Leboda R, Skubiszewska-Zięba J, Zazhigalov V. J Therm Anal Calorim. 2014;115:579–586.10.1007/s10973-013-3343-5Suche in Google Scholar

18. Sydorchuk V, Khalameida S, Skubiszewska-Zięba J, Leboda R, Starchevskii V, Zazhigalov V,et al. Proceed Intern Conf. Nanomaterials: applications and properties, 2013 2, 01PCSI12-01PCSI 13.Suche in Google Scholar

19. Horikoshi S, Saitou A, Hidaka H. Environ Sci Technol. 2003;37:5813–5822.10.1021/es030326iSuche in Google Scholar PubMed

20. Eren Z, Ince NH. J Hazard Mater. 2010;177:1019–1024.10.1016/j.jhazmat.2010.01.021Suche in Google Scholar PubMed

21. Heinicke G. Tribochemistry. Berlin: Academie-Verlag; 1984.Suche in Google Scholar

22. Domen K, Kondo JN, Hara M, Takata T. Bull Chem Soc Jap. 2000;73:1307–1331.10.1246/bcsj.73.1307Suche in Google Scholar

23. Ayub I, Su D, Willinger M, Kharlamov A, Ushkalov L, Zazhigalov V,et al. Phys Chem Chem Phys. 2003;5:970–978.10.1039/b210418kSuche in Google Scholar

24. Kajdas C, Hiratsuka K, Borkowska A. Tribologia. 2004;19:11–25.Suche in Google Scholar

25. Guo X, Xiang D, Duan G, Mou P. Waste Manage. 2010;30:4–10.10.1016/j.wasman.2009.08.017Suche in Google Scholar PubMed

26. Nasser A, Mingelgrin U. Appl Clay Sci. 2012;67–68:141–150.10.1016/j.clay.2011.11.018Suche in Google Scholar

27. Nomura Y, Nakai S, Hosomi M. Environ Sci Technol. 2005;39:3799–3804.10.1021/es049446wSuche in Google Scholar PubMed

28. Pizzigallo MDR, Leo PD, Ancona V, Spagnuolo M, Schingaro E. Chemosphere. 2011;82:627–634.10.1016/j.chemosphere.2010.09.076Suche in Google Scholar PubMed

29. Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S. J Colloid Interface Sci. 2007;309:464–469.10.1016/j.jcis.2006.12.010Suche in Google Scholar PubMed

30. Rauf MA, Salman AS. Chem Eng J. 2009;151,:10–18.10.1016/j.cej.2009.02.026Suche in Google Scholar

31. Azizova LR, Kulik TV, Palianytsia BB, Lipkovska NA. J Therm Anal Calorim. 2015;122:517–523.10.1007/s10973-015-4828-1Suche in Google Scholar

32. Wiecinska P. J Therm Anal Calorim. 2016;123:1419–1430.10.1007/s10973-015-5075-1Suche in Google Scholar

33. Ohno T, Sarukawa K, Tokieda K, Matsumura M. J Catal. 2001;203:82–86.10.1006/jcat.2001.3316Suche in Google Scholar

34. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC. J Phys Chem B. 2003;107:4545–4549.10.1021/jp0273934Suche in Google Scholar

35. Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V. J Phys Chem C. 2007;111:13222–13231.10.1021/jp0741096Suche in Google Scholar

36. Byrappa K, Adschiri T. Progr Cryst Growth Charact Mater. 2007;53:117–166.10.1016/j.pcrysgrow.2007.04.001Suche in Google Scholar

37. Marković S, Mitrić M, Starčević G, Uskoković D. Ultrason Sonochem. 2008;15:16–20.10.1016/j.ultsonch.2007.07.008Suche in Google Scholar

38. Remya N, Lin J-G. Chem Eng J. 2011;166:797–813.10.1016/j.cej.2010.11.100Suche in Google Scholar

39. Tengvall P, Bertilsson L, Liedberg B, Elwing H, Lundström I. J Colloid Interface Sci. 1990;139:575–580.10.1016/0021-9797(90)90131-7Suche in Google Scholar

40. Reddy RS, Shaikh TM, Rawat V, Karabal PU, Dewkar G, Suryavanshi G,et al. Catal Surv Asia. 2010;14:21–32.10.1007/s10563-010-9085-5Suche in Google Scholar

41. Ayers MR, Hunt AJ. Mater Lett. 1998;34:290–293.10.1016/S0167-577X(97)00181-XSuche in Google Scholar

42. Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C. Appl Catal B. 2004;54:51–58.10.1016/j.apcatb.2004.06.006Suche in Google Scholar

43. Zayed MA, Mohamed GG, Abdullah SAM. Spectrochim Acta Part A. 2011;78:1027–1036. .10.1016/j.saa.2010.12.037Suche in Google Scholar PubMed

44. Gupta NS, Basu S, Payra P, Mathur P, Bhaduri S, Lahiri GK, et al. Dalton Trans. 24: 2007;2594–2598.10.1039/b703352dSuche in Google Scholar PubMed

45. Smirnova NP, Surovtseva NI, Fesenko T, Demianenko E, Grebenyuk A, Eremenko A. J Nanostruct Chem. 2015;5:333–346.10.1007/s40097-015-0165-ySuche in Google Scholar

Received: 2016-7-5
Revised: 2016-10-7
Accepted: 2016-10-13
Published Online: 2017-2-3
Published in Print: 2017-1-1

© 2017 by Walter De Gruyter GmbH

Artikel in diesem Heft

  1. Editorial: The importance of advanced oxidation processes in degrading persistent pollutants
  2. An overview on heterogeneous Fenton and photoFenton reactions using zerovalent iron materials
  3. Photooxidative Degradation of Pesticides in Water; Response Surface Modeling Approach
  4. The treatment of aniline in aqueous solutions by gamma irradiation
  5. Microwave regeneration of biological activated carbon
  6. Molecular iodine/aqueous NH4OAc: a green reaction system for direct oxidative synthesis of nitriles from amines
  7. Catalytic Degradation of Safranin T in Aqueous Medium Using Non-conventional Processes
  8. Oxidation of 1, 2-dichlorobenzene on a commercial V2O5-WO3/nano-TiO2 catalyst: Effect of HCl addition
  9. Current conduction mechanisms in thermal nitride and dry gate oxide grown on 4H-silicon carbide (SiC)
  10. Effect of light and oxygen on repetitive bacterial inactivation on uniform, adhesive, robust and stable Cu-polyester surfaces
  11. Wet oxidation of an industrial high concentration pharmaceutical wastewater using hydrogen peroxide as an oxidant
  12. Oxidation characteristics of heavy crude oil in ignition process
  13. Comparative studies on the performance of porous Ti/Sno2-Sb2O3/Pbo2 enhanced by CNT and Bi Co-doped electrodes for methyl orange oxidation
  14. Application of photocatalytic paint for destruction of benzo[a]pyrene. Impact of air humidity
  15. Spray-drying synthesis and characterization of Li4Ti5O12 anode material for lithium ion batteries
  16. Kinetics analysis of photocatalytic degradation of Acid Orange 7 by Co/N/Er3+: Y3Al5O12/TiO2 films
  17. Reaction characteristics of oxygen generation from plate-like potassium superoxide within a confined space
  18. Electrochemical reduction of CO2 on a Cu2O/polyaniline /stainless steel based electrode
  19. Role of oxygen-containing functional surface groups of activated carbons on the elimination of 2-hydroxybenzothiazole from waters in A hybrid heterogeneous ozonation system
  20. The degradation efficiency and mechanism of meclofenamic acid in aqueous solution by UV irradiation
  21. Effect of electrode oxide film in micro arc oxidation on water treatment
  22. Photocurrent response and photocatalytic activity of Nd-doped TiO2 thin films prepared by sol-gel method
  23. Mathematical model involving chemical reaction and mass transfer for the ozonation of dimethyl phthalate in water in a bubble column reactor
  24. Elimination of organic micro-contaminants in municipal wastewater by a combined immobilized biomass reactor and solar photo-Fenton tertiary treatment
  25. Degradation of catechol on BiOCl: charge transfer complex formation and photoactivity
  26. Photocatalytic degradation of phenol on strontium titanate supported on HZSM-5
  27. Selective Fenton-like catalytic oxidation of acid orange II on inorganic heterogeneous molecular imprinted catalysts
  28. Decoloration of azo dye methyl orange by a novel electro-Fenton internal circulation batch reactor
Heruntergeladen am 1.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jaots-2016-0176/html?lang=de
Button zum nach oben scrollen