Home Estimation of friction and wear properties of additively manufactured recycled-ABS parts using artificial neural network approach: effects of layer thickness, infill rate, and building direction
Article
Licensed
Unlicensed Requires Authentication

Estimation of friction and wear properties of additively manufactured recycled-ABS parts using artificial neural network approach: effects of layer thickness, infill rate, and building direction

  • Çağın Bolat , Abdulkadir Çebi EMAIL logo , Sarp Çoban and Berkay Ergene
Published/Copyright: April 24, 2024
Become an author with De Gruyter Brill

Abstract

This investigation aims to elucidate friction and wear features of additively manufactured recycled-ABS components by utilizing neural network algorithms. In that sense, it is the first initiative in the technical literature and brings fused deposition modeling (FDM) technology, recycled filament-based products, and artificial neural network strategies together to estimate the friction coefficient and volume loss outcomes. In the experimental stage, to provide the required data for five different neural algorithms, dry-sliding wear tests, and hardness measurements were conducted. As FDM printing variables, layer thickness (0.1, 0.2, and 0.3 mm), infill rate (40, 70, and 100 %), and building direction (vertical, and horizontal) were selected. The obtained results pointed out that vertically built samples usually had lower wear resistance than the horizontally built samples. This case can be clarified with the initially measured hardness levels of horizontally built samples and optical microscopic analyses. Besides, the Levenberg Marquard (LM) algorithm was the best option to foresee the wear outputs compared to other approaches. Considering all error levels in this paper, the offered results by neural networks are notably acceptable for the real industrial usage of material, mechanical, and manufacturing engineering areas.


Corresponding author: Abdulkadir Çebi, Department of Mechanical Engineering, Engineering Faculty, Samsun University, 55420, Samsun, Türkiye, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: CB: Supervisor, Visualization, Writing and Editing; AC: Writing, Editing and Investigation; SC: Neural Network and Writing; BE: Supervisor, Visualization, Writing and Editing. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: The authors state no conflict of interest.

  5. Research funding: None declared.

  6. Data availability: The raw data can be obtained on request from the corresponding author.

Appendix

Table A.1: RMSE, MAE, R2 and MEP values for the LM, BR, SCG, BFG and RP algorithms.

Algorithm # of neurons Training Testing
RMSE MAE R 2 MEP (%) RMSE MAE R 2 MEP (%)
LM 5 0.0063 0.0043 0.9996 4.2921 0.0070 0.0045 0.9995 4.7965
LM 6 0.0060 0.0043 0.9996 4.2980 0.0059 0.0044 0.9996 4.3994
LM 7 0.0053 0.0036 0.9997 3.7009 0.0070 0.0045 0.9995 4.2901
LM 8 0.0055 0.0038 0.9997 3.7580 0.0063 0.0044 0.9995 4.4359
LM 9 0.0057 0.0038 0.9996 3.8296 0.0050 0.0034 0.9997 3.3522
LM 10 0.0055 0.0037 0.9997 3.7246 0.0063 0.0044 0.9996 4.2928
BR 5 0.0063 0.0046 0.9996 4.6419 0.0062 0.0046 0.9996 4.9651
BR 6 0.0060 0.0044 0.9996 4.3576 0.0050 0.0037 0.9997 3.7443
BR 7 0.0056 0.0039 0.9996 3.9302 0.0063 0.0039 0.9996 3.9738
BR 8 0.0054 0.0035 0.9997 3.5548 0.0066 0.0048 0.9995 4.5445
BR 9 0.0055 0.0038 0.9997 3.7966 0.0062 0.0042 0.9995 4.1218
BR 10 0.0053 0.0036 0.9997 3.6066 0.0064 0.0046 0.9996 4.5621
SCG 5 0.0093 0.0070 0.9991 7.1770 0.0082 0.0059 0.9993 6.6377
SCG 6 0.0069 0.0047 0.9995 4.6295 0.0086 0.0051 0.9993 5.5648
SCG 7 0.0057 0.0041 0.9996 4.1721 0.0067 0.0047 0.9995 4.7380
SCG 8 0.0073 0.0050 0.9995 5.1616 0.0066 0.0046 0.9995 4.7338
SCG 9 0.0060 0.0043 0.9996 4.3177 0.0045 0.035 0.9997 3.5009
SCG 10 0.0058 0.0040 0.9996 4.0049 0.0055 0.0037 0.9997 3.8441
BFG 5 0.0098 0.0075 0.9990 7.7813 0.0094 0.0063 0.9991 6.6895
BFG 6 0.0085 0.0065 0.9992 6.4473 0.0089 0.0071 0.9991 7.7731
BFG 7 0.0071 0.0052 0.9995 5.3043 0.0080 0.0061 0.9994 6.2189
BFG 8 0.0079 0.0055 0.9993 5.3949 0.0071 0.0057 0.9995 5.4981
BFG 9 0.0073 0.0051 0.9994 5.0717 0.0081 0.0062 0.9993 6.2044
BFG 10 0.0070 0.0051 0.9995 5.0902 0.0069 0.0049 0.9995 4.9913
RP 5 0.0124 0.0096 0.9991 9.5451 0.0095 0.0064 0.9994 7.4851
RP 6 0.0093 0.0073 0.9977 7.7233 0.0079 0.0059 0.9979 5.8844
RP 7 0.0088 0.0067 0.9992 6.8243 0.0096 0.0065 0.9991 6.9147
RP 8 0.0075 0.0055 0.9994 5.4966 0.0069 0.0051 0.9995 5.0257
RP 9 0.0060 0.0044 0.9996 4.4521 0.0076 0.0059 0.9994 5.7031
RP 10 0.0060 0.0042 0.9996 4.2935 0.0065 0.0045 0.9996 4.2303

Table A.2 Normalized dataset.

Experimental number Layer thickness (mm) Infill rate (%) Building direction Friction coefficient Volume loss (mm3)
1 0.33 0.33 0 0.0992 0.0613
2 0.33 0.33 0 0.0995 0.0621
3 0.33 0.33 0 0.1021 0.0620
4 0.33 0.33 0 0.1025 0.0622
5 0.33 0.33 0 0.1071 0.0627
6 0.33 0.66 0 0.0907 0.1300
7 0.33 0.66 0 0.1057 0.1300
8 0.33 0.66 0 0.1052 0.1326
9 0.33 0.66 0 0.1098 0.1301
10 0.33 0.66 0 0.1144 0.1404
11 0.33 1.0 0 0.0907 0.0778
12 0.33 1.0 0 0.1112 0.0779
13 0.33 1.0 0 0.1120 0.0785
14 0.33 1.0 0 0.1223 0.0782
15 0.33 1.0 0 0.1239 0.0801
16 0.33 0.33 1 0.0802 0.1358
17 0.33 0.33 1 0.0931 0.1376
18 0.33 0.33 1 0.0908 0.1376
19 0.33 0.33 1 0.0938 0.1377
20 0.33 0.33 1 0.0960 0.1394
21 0.33 0.66 1 0.1127 0.1514
22 0.33 0.66 1 0.1133 0.1522
23 0.33 0.66 1 0.1174 0.1535
24 0.33 0.66 1 0.1134 0.1535
25 0.33 0.66 1 0.1302 0.1571
26 0.33 1.0 1 0.0935 0.1113
27 0.33 1.0 1 0.0937 0.1176
28 0.33 1.0 1 0.0977 0.1170
29 0.33 1.0 1 0.0940 0.1185
30 0.33 1.0 1 0.1095 0.1203
31 0.66 0.33 0 0.1039 0.0742
32 0.66 0.33 0 0.1183 0.0752
33 0.66 0.33 0 0.1150 0.0796
34 0.66 0.33 0 0.1187 0.0843
35 0.66 0.33 0 0.1190 0.0848
36 0.66 0.66 0 0.0789 0.1000
37 0.66 0.66 0 0.0826 0.1024
38 0.66 0.66 0 0.0907 0.1049
39 0.66 0.66 0 0.0956 0.1085
40 0.66 0.66 0 0.1057 0.1086
41 0.66 1.0 0 0.1038 0.0771
42 0.66 1.0 0 0.1076 0.0772
43 0.66 1.0 0 0.1160 0.0786
44 0.66 1.0 0 0.1254 0.0783
45 0.66 1.0 0 0.1273 0.0819
46 0.66 0.33 1 0.0816 0.1596
47 0.66 0.33 1 0.0852 0.1629
48 0.66 0.33 1 0.0872 0.1628
49 0.66 0.33 1 0.0871 0.1639
50 0.66 0.33 1 0.0949 0.1647
51 0.66 0.66 1 0.1036 0.0917
52 0.66 0.66 1 0.1065 0.0924
53 0.66 0.66 1 0.1109 0.0966
54 0.66 0.66 1 0.1122 0.1002
55 0.66 0.66 1 0.1213 0.1023
56 0.66 1.0 1 0.0822 0.1029
57 0.66 1.0 1 0.0846 0.1027
58 0.66 1.0 1 0.0869 0.0988
59 0.66 1.0 1 0.1004 0.0944
60 0.66 1.0 1 0.0806 0.0953
61 1.0 0.33 0 0.1155 0.1082
62 1.0 0.33 0 0.1279 0.1080
63 1.0 0.33 0 0.1149 0.1072
64 1.0 0.33 0 0.1047 0.1055
65 1.0 0.33 0 0.1112 0.1071
66 1.0 0.66 0 0.0918 0.0642
67 1.0 0.66 0 0.1075 0.0601
68 1.0 0.66 0 0.1029 0.0645
69 1.0 0.66 0 0.1046 0.0658
70 1.0 0.66 0 0.1076 0.0678
71 1.0 1.0 0 0.1218 0.0911
72 1.0 1.0 0 0.1192 0.0915
73 1.0 1.0 0 0.1127 0.0890
74 1.0 1.0 0 0.1150 0.0883
75 1.0 1.0 0 0.0948 0.0850
76 1.0 0.33 1 0.1020 0.0811
77 1.0 0.33 1 0.1013 0.0767
78 1.0 0.33 1 0.1001 0.0779
79 1.0 0.33 1 0.1049 0.0759
80 1.0 0.33 1 0.0922 0.0777
81 1.0 0.66 1 0.1088 0.1064
82 1.0 0.66 1 0.1209 0.1059
83 1.0 0.66 1 0.1091 0.1064
84 1.0 0.66 1 0.1022 0.1073
85 1.0 0.66 1 0.1047 0.1061
86 1.0 1.0 1 0.1011 0.0803
87 1.0 1.0 1 0.1259 0.0811
88 1.0 1.0 1 0.1125 0.0776
89 1.0 1.0 1 0.1021 0.0752
90 1.0 1.0 1 0.1208 0.0737

References

Atakok, G., Kam, M., and Koc, H.B. (2022). Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: a statistical investigation. J. Mater. Res. Technol. 18: 1542–1554, https://doi.org/10.1016/j.jmrt.2022.03.013.Search in Google Scholar

Bahrami, M.H., Ehteshamfar, M.V., and Adibi, H. (2023). The effect, prediction, and optimization of Fe particles on wear behavior of Fe–ABS composites fabricated by fused deposition modeling. Arabian J. Sci. Eng. 49: 2001–2016, https://doi.org/10.1007/s13369-023-08077-0.Search in Google Scholar

Ben Difallah, B., Kharrat, M., Dammak, M., and Monteil, G. (2012). Mechanical and tribological response of ABS polymer matrix filled with graphite powder. Mater. Des. 34: 782–787, https://doi.org/10.1016/j.matdes.2011.07.001.Search in Google Scholar

Bolat, Ç., Karakılınç, U., Yalçın, B., Öz, Y., Yavaş, Ç., Ergene, B., Ercetin, A., and Akkoyun, F. (2023). Effect of drilling parameters and tool geometry on the thrust force and surface roughness of aerospace grade laminate composites. Micromachines 14: 1427, https://doi.org/10.3390/mi14071427.Search in Google Scholar PubMed PubMed Central

Çanti, E., Aydin, M., Yildirim, F., Günay, M., and Kaya, B. (2017) In: Investigation of the FDM process performance at different printing parameters. International Symposium on 3D Printing Technologies 3D-PTS2017. 3D Print Expo Turkey, Karabuk, Available at: https://www.researchgate.net/publication/315897117.Search in Google Scholar

Chhabra, D., Deswal, S., Kaushik, A., Garg, R.K., Kovács, A., Khargotra, R., and Singh, T. (2023). Analysis of fused filament fabrication parameters for sliding wear performance of carbon reinforced polyamide composite material fabricated parts using a hybrid heuristic tool. Polym. Test. 118: 107910, https://doi.org/10.1016/j.polymertesting.2022.107910.Search in Google Scholar

Chithambaram, K. and Senthilnathan, N. (2024). Effects of printing parameters on hardness and wear characteristics of 3D printed polyetheretherketone (PEEK) polymer. Mater. Lett. 356: 135588, https://doi.org/10.1016/j.matlet.2023.135588.Search in Google Scholar

Cress, A.K., Huynh, J., Anderson, E.H., O’neill, R., Schneider, Y., and Keleş, Ö. (2021). Effect of recycling on the mechanical behavior and structure of additively manufactured acrylonitrile butadiene styrene (ABS). J. Clean. Prod. 279: 123689, https://doi.org/10.1016/j.jclepro.2020.123689.Search in Google Scholar

Cristea, D., Pop, M.A., Faraian, C., and Munteanu, D. (2019). The influence of additive manufacturing parameters on the structural and mechanical properties of acrylonitrile butadiene styrene (ABS) parts produced by fused filament fabrication. IOP Conf. Ser. Mater. Sci. Eng. 682: 012013, https://doi.org/10.1088/1757-899X/682/1/012013.Search in Google Scholar

Daly, M., Tarfaoui, M., Chihi, M., and Bouraoui, C. (2023). FDM technology and the effect of printing parameters on the tensile strength of ABS parts. Int. J. Adv. Manuf. Technol. 126: 5307–5323, https://doi.org/10.1007/s00170-023-11486-y.Search in Google Scholar PubMed PubMed Central

Dave, H.K., Patadiya, N.H., Prajapati, A.R., and Rajpurohit, S.R. (2019). Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modeling-printed poly-lactic acid part. Proc. IME C J. Mech. Eng. Sci. 235: 1811–1827, https://doi.org/10.1177/0954406219856383.Search in Google Scholar

Ergene, B. and Bolat, Ç. (2022). An experimental study on the role of manufacturing parameters on the dry sliding wear performance of additively manufactured PETG. Int. Polym. Process 37: 255–270, https://doi.org/10.1515/ipp-2022-0015.Search in Google Scholar

Eryildiz, M. (2023). Experimental investigation and simulation of 3D printed sandwich structures with novel core topologies under bending loads. Int. Polym. Process 38: 277–289, https://doi.org/10.1515/ipp-2022-4311.Search in Google Scholar

Goud, V., Ramasamy, A., Das, A., and Kalyanasundaram, D. (2019). Box-Behnken technique based multi-parametric optimization of electrostatic spray coating in the manufacturing of thermoplastic composites. Mater. Manuf. Process. 34: 1638–1645, https://doi.org/10.1080/10426914.2019.1666991.Search in Google Scholar

Hanon, M.M. and Zsidai, L. (2021). Comprehending the role of process parameters and filament color on the structure and tribological performance of 3D printed PLA. J. Mater. Res. Technol. 15: 647–660, https://doi.org/10.1016/j.jmrt.2021.08.061.Search in Google Scholar

Jan, P., Matkovič, S., Bek, M., Perše, L.S., and Kalin, M. (2023). Tribological behaviour of green wood-based unrecycled and recycled polypropylene composites. Wear 524–525: 204826, https://doi.org/10.1016/j.wear.2023.204826.Search in Google Scholar

Kallel, A., Koutiri, I., Babaeitorkamani, E., Khavandi, A., Tamizifar, M., Shirinbayan, M., and Tcharkhtchi, A. (2019). Study of bonding formation between the filaments of PLA in FFF process. Int. Polym. Process. 34: 434–444, https://doi.org/10.3139/217.3718.Search in Google Scholar

Kara, F., Aslantas, K., and Çiçek, A. (2015). ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel. Neural Comput. Appl. 26: 237–250, https://doi.org/10.1007/s00521-014-1721-y.Search in Google Scholar

Karabeyoglu, S.S., Eksi, O., Yaman, P., and Kucukyildirim, B.O. (2021). Effects of infill pattern and density on wear performance of FDM-printed acrylonitrile-butadiene-styrene parts. J. Polym. Eng. 41: 854–862, https://doi.org/10.1515/polyeng-2021-0192.Search in Google Scholar

Karthick, N., Soundararajan, R., Arul, R., and Prasanth, J.A. (2023). Evolution of tribological performance of polypropylene with carbon fibre composites fabricated through FDM technology by varying infill density. J. Inst. Eng. Electron.: Ser. D 1–8, https://doi.org/10.1007/s40033-023-00503-9.Search in Google Scholar

Kumar, R., Singh, R., and Farina, I. (2018). On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications. PSU Res. Rev. 2: 115–137, https://doi.org/10.1108/PRR-07-2018-0018.Search in Google Scholar

Kuo, C.C., Wu, Y.R., Li, M.H., and Wu, H.W. (2019). Minimizing warpage of ABS prototypes built with low-cost fused deposition modeling machine using developed closed-chamber and optimal process parameters. Int. J. Adv. Manuf. Technol. 101: 593–602, https://doi.org/10.1007/s00170-018-2969-7.Search in Google Scholar

Lanzotti, A., Martorelli, M., Maietta, S., Gerbino, S., Penta, F., and Gloria, A. (2019). A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. Procedia CIRP 79: 143–146, https://doi.org/10.1016/j.procir.2019.02.030.Search in Google Scholar

Liu, X. and Bertilsson, H. (2000). Recycling of ABS and ABS/PC blends. Doktorsavhandlingar Vid. Chalmers Tek. Hogskola 1662: 510–515, https://doi.org/10.1002/(sici)1097-4628(19991017)74:3<510::aid-app5>3.3.co;2-y.10.1002/(SICI)1097-4628(19991017)74:3<510::AID-APP5>3.0.CO;2-6Search in Google Scholar

LiuJie, X., Davim, J.P., and Cardoso, R. (2007). Prediction on tribological behaviour of composite PEEK-CF30 using artificial neural networks. J. Mater. Process. Technol. 189: 374–378, https://doi.org/10.1016/j.jmatprotec.2007.02.019.Search in Google Scholar

Maguluri, N., Lakshmi Srinivas, C., and Suresh, G. (2023 in press). Assessing the wear performance of 3D printed polylactic acid polymer parts. Mater. Today: Proc., https://doi.org/10.1016/j.matpr.2023.04.565.Search in Google Scholar

Mahesh, V. (2023). Artificial neural network coupled experimental investigation of tribological behavior of additive manufactured PETG/OMMT nanocomposites. J. Appl. Polym. Sci. 140: 1–14, https://doi.org/10.1002/app.54089.Search in Google Scholar

Mahesh, V., George, J.P., Mahesh, V., Chakraborthy, H., Mukunda, S., and Ponnusami, S.A. (2023). Dry-sliding wear properties of 3D printed PETG/SCF/OMMT nanocomposites: experimentation and model predictions using artificial neural network. J. Reinf. Plast. Compos.: 07316844231188853, https://doi.org/10.1177/07316844231188853.Search in Google Scholar

Mishra, V., Ror, C.H.K., Negi, S., Kar, S., and Borah, L.N. (2023). 3D printing with recycled ABS resin: effect of blending and printing temperature. Mater. Chem. Phys. 309: 128317, https://doi.org/10.1016/j.matchemphys.2023.128317.Search in Google Scholar

Morales, M.A., Maranon, A., Hernandez, C., Michaud, V., and Porras, A. (2023). Colombian sustainability perspective on fused deposition modeling technology: opportunity to develop recycled and biobased 3D printing filaments. Polymers 15: 528, https://doi.org/10.3390/polym15030528.Search in Google Scholar

Palanisamy, C., Raman, R., and Dhanraj, P.K. (2022). Additive manufacturing: a review on mechanical properties of polyjet and FDM printed parts. Polym. Bull. 79: 7065–7116, https://doi.org/10.1007/s00289-021-03899-0.Search in Google Scholar

Pant, M., Singari, R.M., Arora, P.K., Moona, G., and Kumar, H. (2020). Wear assessment of 3–D printed parts of PLA (polylactic acid) using Taguchi design and Artificial Neural Network (ANN) technique. Mater. Res. Express 7: 115307, https://doi.org/10.1088/2053-1591/abc8bd.Search in Google Scholar

Pillin, I., Montrelay, N., Bourmaud, A., and Grohens, Y. (2008). Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polym. Degrad. Stab. 93: 321–328, https://doi.org/10.1016/j.polymdegradstab.2007.12.005.Search in Google Scholar

Pires, P.B., Santos, J.D., and Pereira, I.V. (2023). Artificial neural networks: history and state of the art. In: Encyclopedia of information science and technology (Sixth, Issue October). IGI Global, Hershey, USA.10.4018/978-1-6684-7366-5.ch037Search in Google Scholar

Prada, R.E.D., Bossio, G.R., and Bruno, M.M. (2023). Effect of FDM printing patterns on mechanical properties of ABS. Rapid Prototyp. J. 29: 2098–2108, https://doi.org/10.1108/RPJ-04-2023-0130.Search in Google Scholar

Rahimi, M., Esfahanian, M., and Moradi, M. (2014). Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS in injection molding. J. Mater. Process. Technol. 214: 2359–2365, https://doi.org/10.1016/j.jmatprotec.2014.04.028.Search in Google Scholar

Rajesh, C., Kumar, N.V.N., and Gowthami, G. (2019). Evaluation of wear behaviour of PLA & ABS parts fabricated by operate FDM technique with distinct orientations. Int. J. Recent Technol. Eng. 5: 11–16.Search in Google Scholar

Sasse, J., Pelzer, L., Schön, M., Ghaddar, T., and Hopmann, C. (2022). Investigation of recycled and coextruded PLA filament for additive manufacturing. Polymers 14: 2407, https://doi.org/10.3390/polym14122407.Search in Google Scholar PubMed PubMed Central

Shahrul, S., Mohammed, B.S., Wahab, M.M.A., and Liew, M.S. (2021). Mechanical properties of crumb rubber mortar containing nano-silica using response surface methodology. Materials 14: 5496, https://doi.org/10.3390/ma14195496.Search in Google Scholar PubMed PubMed Central

Sharma, A., Chhabra, D., Sahdev, R., Kaushik, A., and Punia, U. (2022). Investigation of wear rate of FDM printed TPU, ASA and multi-material parts using heuristic GANN tool. Mater. Today: Proc. 63: 559–565, https://doi.org/10.1016/j.matpr.2022.04.015.Search in Google Scholar

Singh, G., Brar, G.S., and Singh, R. (2021). On rheological, mechanical, thermal, wear and morphological properties of melamine formaldehyde reinforced recycled ABS for sustainable manufacturing. E3S Web Conf. 309: 01081, https://doi.org/10.1051/e3sconf/202130901081.Search in Google Scholar

Singh, R., Kumar, R., and Ranjan, N. (2019). Sustainability of recycled ABS and PA6 by banana fiber reinforcement: thermal, mechanical and morphological properties. J. Inst. Eng. Electron.: Ser. C 100: 351–360, https://doi.org/10.1007/s40032-017-0435-1.Search in Google Scholar

Şirin, Ş., Aslan, E., and Akincioğlu, G. (2023). Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance. Rapid Prototyp. J. 29: 157–165, https://doi.org/10.1108/RPJ-03-2022-0081.Search in Google Scholar

Srinivasan, R., Rathish, R., Sivaraman, P.R., Pramod, A., and Shivaganesh, G. (2020). Influential analysis of fused deposition modeling process parameters on the wear behaviour of ABS parts. Mater. Today: Proc. 27: 1869–1876, https://doi.org/10.1016/j.matpr.2020.03.808.Search in Google Scholar

Vidakis, N., Petousis, M., Maniadi, A., Koudoumas, E., Vairis, A., and Kechagias, J. (2020). Sustainable additive manufacturing: mechanical response of acrylonitrile-butadiene-styrene over multiple recycling processes. Sustainability 12: 3568, https://doi.org/10.3390/su12093568.Search in Google Scholar

Wang, S., Ma, Y., Deng, Z., Zhang, S., and Cai, J. (2020). Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym. Test. 86: 106483, https://doi.org/10.1016/j.polymertesting.2020.106483.Search in Google Scholar

Wichniarek, R., Hamrol, A., Kuczko, W., Górski, F., and Rogalewicz, M. (2021). ABS filament moisture compensation possibilities in the FDM process. CIRP J. Manuf. Sci. Technol. 35: 550–559, https://doi.org/10.1016/j.cirpj.2021.08.011.Search in Google Scholar

Zhiani Hervan, S., Altınkaynak, A., and Parlar, Z. (2020). Hardness, friction and wear characteristics of 3D-printed PLA polymer. Proc. IME J. J. Eng. Tribol. 235: 1590–1598, https://doi.org/10.1177/1350650120966407.Search in Google Scholar

Received: 2023-12-19
Accepted: 2024-03-06
Published Online: 2024-04-24
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2023-4481/html
Scroll to top button