Startseite Polyurethane foam reinforced with Ag nanoparticle decorated ZnO nanorods: a dual-functional approach for improved antibacterial and mechanical properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polyurethane foam reinforced with Ag nanoparticle decorated ZnO nanorods: a dual-functional approach for improved antibacterial and mechanical properties

  • Zeynab Farrokhi , Mojtaba Kanvisi und Ali Ayati EMAIL logo
Veröffentlicht/Copyright: 19. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study introduces a novel approach by incorporating pristine ZnO nanorods and Ag nanoparticles decorated ZnO nanorods into a polyurethane foam matrix. This synergistic combination aims to enhance the foam’s antibacterial properties while investigating its impact on mechanical strength. Nanoparticles and prepared nanopolymer were characterized by different methods like XRD, TEM, SEM, and EDS. The mechanical characteristics and antibacterial properties of prepared polyurethane composites were investigated in the presence of Escherichia coli and Bacillus subtilis. A much higher level than reported in the literature was found for PU films filled with ZnO nanorods. Incorporating nanoparticles into polyurethane nanocomposites has been demonstrated to significantly improve polyurethane’s antibacterial properties. The results revealed that ZnO/PU antibacterial efficiency decreased with increasing ZnO nanofiller content, while AgNPs@ZnO/PU composite antibacterial efficiency increased with increasing AgNPs@ZnO nanofiller content. Also, the weak coordinate bond between ZnO and Ag in the PU chain extender was demonstrated. Increasing the ZnO content to 1.4 wt% resulted in greater Young’s modulus and tensile strength, which increased when the ZnO content was increased further. Such a dual-functional enhancement holds promise for applications requiring both antimicrobial efficacy and mechanical integrity.


Corresponding author: Ali Ayati, Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Zeynab Farrokhi: Investigation; Data curation; Formal analysis; Methodology. Mojtaba Kanvisi: Supervision; Conceptualization; Writing – original draft. Ali Ayati: Supervision; Conceptualization; review & editing.

  4. Competing interests: The authors state no conflict of interest.

  5. Research funding: None declared.

  6. Data availability: The raw data can be obtained on request from the corresponding author.

References

Abdullah, M., Ramtani, S., and Yagoubi, N. (2023). Mechanical properties of polyurethane foam for potential application in the prevention and treatment of pressure ulcers. Result Eng. 19: 101237, https://doi.org/10.1016/j.rineng.2023.101237.Suche in Google Scholar

Ahmadpour, A., Tanhaei, B., Khoshkho, S.M., Ayati, A., Krivoshapkin, P., and Sillanpää, M. (2023). Dual-purpose magnetic κ-carrageenan/montmorillonite hydrogel for carrying and removal of tetracycline from aqueous medium. Inorg. Chem. Commun. 156: 111274, https://doi.org/10.1016/j.inoche.2023.111274.Suche in Google Scholar

Akbarian, M., Olya, M.E., Ataeefard, M., and Mahdavian, M. (2012). The influence of nanosilver on thermal and antibacterial properties of a 2K waterborne polyurethane coating. Prog. Org. Coat. 75: 344–348, https://doi.org/10.1016/j.porgcoat.2012.07.017.Suche in Google Scholar

Akindoyo, J.O., Beg, M.D.H., Ghazali, S., Islam, M.R., Jeyaratnam, N., and Yuvaraj, A.R. (2016). Polyurethane types, synthesis and applications – a review. RSC Adv. 6: 114453–114482, https://doi.org/10.1039/C6RA14525F.Suche in Google Scholar

Ameen, F., Karimi-Maleh, H., Darabi, R., Akin, M., Ayati, A., Ayyildiz, S., Bekmezci, M., Bayat, R., and Sen, F. (2023). Synthesis and characterization of activated carbon supported bimetallic Pd based nanoparticles and their sensor and antibacterial investigation. Environ. Res. 221: 115287, https://doi.org/10.1016/j.envres.2023.115287.Suche in Google Scholar PubMed

Anwar, M.F., Yu, L.J., Lim, Y.M., Tarawneh, M.A., Se Yong, E.N., and Lai, N.Y.G. (2023). Water absorption properties of polyurethane foam reinforced with paper pulp. Mater. Today: Proc., https://doi.org/10.1016/j.matpr.2022.12.156.Suche in Google Scholar

Ayati, A., Ahmadpour, A., Bamoharram, F.F., Heravi, M.M., Rashidi, H., and Tanhaei, B. (2011). A new photocatalyst for preparation of silver nanoparticles and their photcatalysis of the decolorization of methyl orange. J. Nanostruct. Chem. 2: 15–22.Suche in Google Scholar

Ayati, A., Ahmadpour, A., Bamoharram, F.F., Heravi, M.M., and Sillanpää, M. (2012). Rate redox-controlled green photosynthesis of gold nanoparticles using H3+xPMo12−xVxO40. Gold Bull 45: 145–151, https://doi.org/10.1007/s13404-012-0058-5.Suche in Google Scholar

Cui, M., Chai, Z., Lu, Y., Zhu, J., and Chen, J. (2023). Developments of polyurethane in biomedical applications: a review. Resources Chem. Mater. 2: 262–276, https://doi.org/10.1016/j.recm.2023.07.004.Suche in Google Scholar

El Saeed, A.M., El-Fattah, M.A., and Azzam, A.M. (2015). Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating. Dyes Pigm. 121: 282–289, https://doi.org/10.1016/j.dyepig.2015.05.037.Suche in Google Scholar

Espitia, P.J.P., Soares, N.F.F., Coimbra, J.S.R., de Andrade, N.J., Cruz, R.S., and Medeiros, E.A.A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5: 1447–1464, https://doi.org/v10.1007/s11947-012-0797-6.10.1007/s11947-012-0797-6Suche in Google Scholar

Farrokhi, Z., Ayati, A., Kanvisi, M., and Sillanpää, M. (2019). Recent advance in antibacterial activity of nanoparticles contained polyurethane. J. Appl. Polym. Sci. 136: 46997, https://doi.org/10.1002/app.46997.Suche in Google Scholar

Fu, H., Wang, Y., Li, X., and Chen, W. (2016). Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Compos. Sci. Technol. 126: 86–93, https://doi.org/10.1016/j.compscitech.2016.02.018.Suche in Google Scholar

Haris, N.I.N., Hassan, M.Z., Ilyas, R.A., Suhot, M.A., Sapuan, S.M., Dolah, R., Mohammad, R., and Asyraf, M.R.M. (2022). Dynamic mechanical properties of natural fiber reinforced hybrid polymer composites: a review. J. Mater. Res. Technol. 19: 167–182, https://doi.org/10.1016/j.jmrt.2022.04.155.Suche in Google Scholar

Hojjati-Najafabadi, A., Davar, F., Enteshari, Z., and Hosseini-Koupaei, M. (2021). Antibacterial and photocatalytic behaviour of green synthesis of Zn0.95Ag0.05O nanoparticles using herbal medicine extract. Ceram. Int. 47: 31617–31624, https://doi.org/10.1016/j.ceramint.2021.08.042.Suche in Google Scholar

Hojjati-Najafabadi, A., Aygun, A., Tiri, R.N.E., Gulbagca, F., Lounissaa, M.I., Feng, P., Karimi, F., and Sen, F. (2023a). Bacillus thuringiensis based ruthenium/nickel Co-doped zinc as a green nanocatalyst: enhanced photocatalytic activity, mechanism, and efficient H2 production from sodium borohydride methanolysis. Ind. Eng. Chem. Res. 62: 4655–4664, https://doi.org/10.1021/acs.iecr.2c03833.Suche in Google Scholar

Hojjati-Najafabadi, A., Nasr Esfahani, P., Davar, F., Aminabhavi, T.M., and Vasseghian, Y. (2023b). Adsorptive removal of malachite green using novel GO@ZnO-NiFe2O4-αAl2O3 nanocomposites. Chem. Eng. J. 471: 144485, https://doi.org/10.1016/j.cej.2023.144485.Suche in Google Scholar

Hsu, S.-h., Tseng, H.-J., and Lin, Y.-C. (2010). The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomater 31: 6796–6808, https://doi.org/10.1016/j.biomaterials.2010.05.015.Suche in Google Scholar PubMed

Jain, P. and Pradeep, T. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90: 59–63, https://doi.org/10.1002/bit.20368.Suche in Google Scholar PubMed

Jin, F.-L., Hu, R.-R., and Park, S.-J. (2019). Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: a review. Comp. B: Eng 164: 287–296, https://doi.org/10.1016/j.compositesb.2018.10.078.Suche in Google Scholar

Kasi, G., Viswanathan, K., Sadeghi, K., and Seo, J. (2019). Optical, thermal, and structural properties of polyurethane in Mg-doped zinc oxide nanoparticles for antibacterial activity. Prog. Org. Coat. 133: 309–315, https://doi.org/10.1016/j.porgcoat.2019.04.066.Suche in Google Scholar

Kaur, J., Gupta, K., Kumar, V., Bansal, S., and Singhal, S. (2016). Synergic effect of Ag decoration onto ZnO nanoparticles for the remediation of synthetic dye wastewater. Ceram. Int. 42: 2378–2385, https://doi.org/10.1016/j.ceramint.2015.10.035.Suche in Google Scholar

Kumar, M. and Kaur, R. (2014). Effect of different formulations of MDI on rigid polyurethane foams based on Castor oil. Int. J. Sci. Res. Rev. 2: 29–42.Suche in Google Scholar

Li, J., Hong, R., Li, M., Li, H., Zheng, Y., and Ding, J. (2009). Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat. 64: 504–509, https://doi.org/10.1016/j.porgcoat.2008.08.013.Suche in Google Scholar

Li, C., Ye, H., Ge, S., Yao, Y., Ashok, B., Hariram, N., Liu, H., Tian, H., He, Y., Guo, G., et al.. (2022). Fabrication and properties of antimicrobial flexible nanocomposite polyurethane foams with in situ generated copper nanoparticles. J. Mater. Res. Technol. 19: 3603–3615, https://doi.org/10.1016/j.jmrt.2022.06.115.Suche in Google Scholar

Ma, X.-Y. and Zhang, W.-D. (2009). Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym. Degrad. Stab. 94: 1103–1109, https://doi.org/10.1016/j.polymdegradstab.2009.03.024.Suche in Google Scholar

Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M., Imani, R., Baheiraei, N., Farokhi, M., and Fare, S. (2018). Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Mater. Sci. Eng. C 82: 130–140, https://doi.org/10.1016/j.msec.2017.08.064.Suche in Google Scholar PubMed

Nasrollahi, N., Yousefpoor, M., Khataee, A., and Vatanpour, V. (2022). Polyurethane-based separation membranes: a review on fabrication techniques, applications, and future prospectives. J. Ind. Eng. Chem. 116: 99–119, https://doi.org/10.1016/j.jiec.2022.09.038.Suche in Google Scholar

Nguyen, Q.X., Nguyen, T.T., Pham, N.M., Khong, T.T., Cao, T.M., and Pham, V.V. (2022). A fabrication of CNTs/TiO2/polyurethane films toward antibacterial and protective coatings. Prog. Org. Coat. 167: 106838, https://doi.org/10.1016/j.porgcoat.2022.106838.Suche in Google Scholar

Pan, H. and Chen, D. (2007). Preparation and characterization of waterborne polyurethane/attapulgite nanocomposites. Eur. Polym. J. 43: 3766–3772, https://doi.org/10.1016/j.eurpolymj.2007.06.031.Suche in Google Scholar

Phong, N.T.P., Thanh, N.V.K., and Phuong, P.H. (2009). Fabrication of antibacterial water filter by coating silver nanoparticles on flexible polyurethane foams. In: J. Phys.: Conference series. IOP Publishing, p. 012079.10.1088/1742-6596/187/1/012079Suche in Google Scholar

Rashidi, H., Ahmadpour, A., Bamoharram, F.F., Heravi, M.M., and Ayati, A. (2013). The novel, one step and facile synthesis of ZnO nanoparticles using heteropolyoxometalates and their photoluminescence behavior. Adv. Powder Technol. 24: 549–553, https://doi.org/10.1016/j.apt.2012.10.008.Suche in Google Scholar

Sheikh, F.A., Barakat, N.A., Kanjwal, M.A., Chaudhari, A.A., Jung, I.-H., Lee, J.H., and Kim, H.Y. (2009). Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromol. Res. 17: 688–696, https://doi.org/10.1007/bf03218929.Suche in Google Scholar

Singh, S., Kumar Paswan, K., Kumar, A., Gupta, V., Sonker, M., Ashhar Khan, M., Kumar, A., and Shreyash, N. (2023). Recent advancements in polyurethane-based tissue engineering. ACS Appl. Bio Mater. 6: 327–348, https://doi.org/10.1021/acsabm.2c00788.Suche in Google Scholar PubMed

Sternberg, J., Sequerth, O., and Pilla, S. (2024). Structure-property relationships in flexible and rigid lignin-derived polyurethane foams: a review. Mater. Today Sustain. 25: 100643, https://doi.org/10.1016/j.mtsust.2023.100643.Suche in Google Scholar

Tijing, L.D., Amarjargal, A., Jiang, Z., Ruelo, M.T.G., Park, C.-H., Pant, H.R., Kim, D.-W., Lee, D.H., and Kim, C.S. (2013). Antibacterial tourmaline nanoparticles/polyurethane hybrid mat decorated with silver nanoparticles prepared by electrospinning and UV photoreduction. Curr. Appl. Phys. 13: 205–210, https://doi.org/10.1016/j.cap.2012.07.011.Suche in Google Scholar

Torkian, N., Bahrami, A., Hosseini-Abari, A., Momeni, M.M., Abdolkarimi-Mahabadi, M., Bayat, A., Hajipour, P., Amini Rourani, H., Abbasi, M.S., Torkian, S., et al.. (2022). Synthesis and characterization of Ag-ion-exchanged zeolite/TiO2 nanocomposites for antibacterial applications and photocatalytic degradation of antibiotics. Environ. Res. 207: 112157, https://doi.org/10.1016/j.envres.2021.112157.Suche in Google Scholar PubMed

Udabe, E., Isik, M., Sardon, H., Irusta, L., Salsamendi, M., Sun, Z., Zheng, Z., Yan, F., and Mecerreyes, D. (2017). Antimicrobial polyurethane foams having cationic ammonium groups. J. Appl. Polym. Sci. 134: 45473, https://doi.org/10.1002/app.45473.Suche in Google Scholar

Wang, W. and Wang, C. (2012). 3 – Polyurethane for biomedical applications: a review of recent developments. In: Davim, J.P. (Ed.), The design and manufacture of medical devices. Elsevier, Cambridge, pp. 115–151.10.1533/9781908818188.115Suche in Google Scholar

Wang, P., Liang, S., Li, X., Sun, Z., An, H., and Li, N. (2023). NIR-induced scratch self-healing properties of waterborne polyurethane/polypyrrole nanocomposites. Mater. Today Commun. 37: 107348, https://doi.org/10.1016/j.mtcomm.2023.107348.Suche in Google Scholar

Wang, H., Li, T., Li, J., Zhao, R., Ding, A., and Xu, F.-J. (2024). Structural engineering of polyurethanes for biomedical applications. Prog. Polym. Sci. 151: 101803, https://doi.org/10.1016/j.progpolymsci.2024.101803.Suche in Google Scholar

Wei, A., Sun, X.W., Xu, C., Dong, Z.L., Yang, Y., Tan, S.T., and Huang, W. (2006). Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology 17: 1740, https://doi.org/10.1088/0957-4484/17/6/033.Suche in Google Scholar PubMed

Xia, C., Joo, S.-W., Hojjati-Najafabadi, A., Xie, H., Wu, Y., Mashifana, T., and Vasseghian, Y. (2023). Latest advances in layered covalent organic frameworks for water and wastewater treatment. Chemosphere 329: 138580, https://doi.org/10.1016/j.chemosphere.2023.138580.Suche in Google Scholar PubMed

Xiong, L., Zhang, W.-D., Shi, Q.-S., and Mai, A.-P. (2015). Waterborne polyurethane/NiAl-LDH/ZnO composites with high antibacterial activity. Polym. Adv. Technol. 26: 495–501, https://doi.org/10.1002/pat.3478.Suche in Google Scholar

Xu, L.C. and Siedlecki, C.A. (2016). 9 – Antibacterial polyurethanes. In: Cooper, S.L. and Guan, J. (Eds.), Advances in polyurethane biomaterials. Woodhead Publishing, Cambridge, pp. 247–284.10.1016/B978-0-08-100614-6.00009-3Suche in Google Scholar

Yadav, A., Kumar, H., Kumari, R., and Sharma, R. (2022). Progress in the development of metal nanoparticles encapsulated with polypyrrole plastic nanocomposites: antibacterial and photocatalytic properties. Mater. Sci. Eng. B 286: 116085, https://doi.org/10.1016/j.mseb.2022.116085.Suche in Google Scholar

Zhao, B., Wang, Y., Guo, H., Wang, J., He, Y., Jiao, Z., and Wu, M. (2007). Iron oxide (III) nanoparticles fabricated by electron beam irradiation method. Mater. Sci. Poland 25: 1143–1148.Suche in Google Scholar

Zhou, H., Wang, X., Wang, T., Zeng, J., Yuan, Z., Jian, J., Zhou, Z., Zeng, L., and Yang, H. (2019). In situ decoration of Ag@AgCl nanoparticles on polyurethane/silk fibroin composite porous films for photocatalytic and antibacterial applications. Eur. Polym. J. 118: 153–162, https://doi.org/10.1016/j.eurpolymj.2019.05.058.Suche in Google Scholar

Zhu, G., Wu, M., Ding, Z., Zou, T., and Wang, L. (2023). Biological properties of polyurethane: issues and potential for application in vascular medicine. Eur. Polym. J. 201: 112536, https://doi.org/10.1016/j.eurpolymj.2023.112536.Suche in Google Scholar

Zia, K.M., Zia, F., Zuber, M., Rehman, S., and Ahmad, M.N. (2015). Alginate based polyurethanes: a review of recent advances and perspective. Int. J. Biol. Macromol. 79: 377–387, https://doi.org/10.1016/j.ijbiomac.2015.04.076.Suche in Google Scholar PubMed

Received: 2023-10-12
Accepted: 2024-03-20
Published Online: 2024-04-19
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2023-4453/html
Button zum nach oben scrollen