Startseite Time series data for process monitoring in injection molding: a quantitative study of the benefits of a high sampling rate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Time series data for process monitoring in injection molding: a quantitative study of the benefits of a high sampling rate

  • Lucas Bogedale ORCID logo EMAIL logo , Alexander Schrodt ORCID logo und Hans-Peter Heim
Veröffentlicht/Copyright: 14. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Process monitoring systems are playing an increasingly important role in reducing production capacity losses in injection molding. Process monitoring and optimization systems are mostly based on processing data of injection molding machine control systems. These data consist of scalar data and time series. This paper introduces a novel approach to modelling injection molding processes using only time series data and evaluates the quantitative influences of varying sampling times on calculation of integral values and model quality. On the basis of the first experiment, it is shown that the sampling rates of these time series have a large influence on information which can be derived from this data (e.g. injection work). These findings provide an assessment of whether the effort is justified for the respective requirements on the accuracy of the injection work and other parameters derived from the time series. In the second experiment, a model is presented which uses only the injection flow and injection pressure profile as input and achieves high coefficients of determination for the prediction of the part weight, despite the absence of mold sensor data and scalar data. It is shown that higher sampling rates of time series results in higher prediction quality of these models. This improves the understanding of the data needed for high quality machine learning models of injection molding processes and enable users to estimate a lower bound for the sample rates of time series for their use cases.


Corresponding author: Lucas Bogedale, Faculty of Mechanical Engineering, Institute of Materials Engineering – Plastics, University of Kassel, Kassel, Germany, E-mail:

Acknowledgment

Parts of this project (HA project no. 864/20–21) were financed with funds of LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3: KMU-Verbundvorhaben (State Offensive for the Development of Scientific and Economic Excellence).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B., Schmalzing, D., Schmitz, M., and Wortmann, A. (2020). Model- driven development of a digital model-driven development of a digital twin for injection molding. In: Advanced information systems engineering. Springer, Cham, Germany.10.1007/978-3-030-49435-3_6Suche in Google Scholar

Chen, W.C., Tai, P.H., Wang, M.W., Deng, W.J., and Chen, C.T. (2008). A neural network-based approach for dynamic quality prediction in a plastic injection molding process. Expert Syst. Appl. 35: 843–849, https://doi.org/10.1016/j.eswa.2007.07.037.Suche in Google Scholar

Eben, J. (2014). Identifikation und Reduzierung realer Schwankungen durch praxistaugliche Prozessführungsmethoden beim Spritzgießen, Ph.D. thesis. Chemnitz.Suche in Google Scholar

Haman, S. (2004). Prozessnahes Qualitätsmanagement beim Spritzgießen, Ph.D. thesis. Chemnitz, Technischen Universität Chemnitz, Institut für Automatisierungstechnik.Suche in Google Scholar

Heim, H.P. (2002). Quality assurance in plastics injection moulding – process monitoring and process control. In: Business briefing: medical device manufacturing & technology.Suche in Google Scholar

Heinzler, F.A. (2014). Modellgestützte Qualitätsregelung durch eine adaptive, druckgeregelte Prozessführung beim Spritzgießen, Ph.D. thesis. Duisburg, Universität Duisburg- Essen.10.3139/O999.02032015Suche in Google Scholar

Johannaber, F. and Michaeli, W. (2014). Handbuch Spritzgießen, 2nd ed. München: Hanser.Suche in Google Scholar

Ke, K.C. and Huang, M.S. (2004). Quality prediction for injection molding by using a multilayer perceptron neural network. Polymers 12: 10–12, https://doi.org/10.3390/polym12081812.Suche in Google Scholar PubMed PubMed Central

Klocke, F., Abel, D., Hopmann, C., Auerbach, T., Keitzel, G., Reiter, M., Reßmann, A., Stemmler, S., and Veselovac, D. (2015). Approaches of self-optimising systems in manufacturing. In: Brecher, C. (Ed.). Advances in production technology. Lecture notes in production engineering. Springer Open, Cham, Heidelberg, New York, Dordrecht, London, pp. 161–171.10.1007/978-3-319-12304-2_12Suche in Google Scholar

Kruppa, S. (2015). Adaptive Prozessführung und alternative Einspritzkonzepte beim Spritzgießen von Thermoplasten: Dissertation, Ph.D. thesis, Shaker Verlag GmbH.Suche in Google Scholar

Laurie, D.P. (1985). Practical error estimation in numerical integration. J. Comput. Appl. Math. 12–13: 425–431, https://doi.org/10.1016/0377-0427(85)90036-6.Suche in Google Scholar

LeCun, Y., Huang, F.J., and Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, Vol. 2. CVPR 2004, Washington, DC, USA, pp. II–104.10.1109/CVPR.2004.1315150Suche in Google Scholar

Plastics Europe Deutschland e.V. (2019). An analysis of European plastics production, demand and waste data. Plastics the facts 2019 14.Suche in Google Scholar

Schiffers, R., Morik, K., Struchtrup, A.S., Honysz, P.J., and Wortberg, J. (2018). Anomaly detection in injection molding process data based on unsupervised learning. Journal of Plastics Technology 14: 302–347, https://doi.org/10.3139/o999.02052018.Suche in Google Scholar

Struchtrup, A.S. (2021). Ganzheitliche Formteil- Qualitätsprognose für das Spritzgießen thermoplastischer Kunststoffe auf der Basis maschineller Lernverfahren: Dissertation, Ph.D. thesis, Universität Duisburg-Essen.Suche in Google Scholar

VDI Verein Deutscher Ingenieure e.V. (2019). VDI-Statusreport Februar 2019. VDI-Statusreport Industrie 4.0 in Spritzgießunternehmen 6.Suche in Google Scholar

Wick, C., Ehrig, F., and Schuster, G. (2020). Data driven injection moulding. In: Hopmann, C. and Dahlmann, R. (Eds.). Advances in polymer processing 2020: proceedings of the international symposium on plastics technology. Springer Vieweg, Berlin, Germany, pp. 128–136.10.1007/978-3-662-60809-8_11Suche in Google Scholar

Received: 2022-07-12
Accepted: 2022-12-11
Published Online: 2023-04-14
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Research Articles
  3. Influence of process parameters of a continuous final mixer on the properties of carbon black/rubber composites
  4. Time series data for process monitoring in injection molding: a quantitative study of the benefits of a high sampling rate
  5. Vibration damping properties of graphene nanoplatelets filled glass/carbon fiber hybrid composites
  6. Optical and temperature dependent electrical properties of poly (vinyl chloride)/copper alumina nanocomposites for optoelectronic devices
  7. Numerical visualization of extensional flows in injection molding of polymer melts
  8. Thermal, mechanical and dielectric properties of glass fiber reinforced epoxy-lanthanum manganite nanocomposites
  9. Statistical research on the mixing properties of wave based screws by numerical simulations
  10. Influence of mold cavity thickness on electrical, morphological and thermal properties of polypropylene/carbon micromoldings
  11. Development of a prototype for the rubber latex industry to detect dry rubber content of fresh natural rubber latex using a novel measurement system with proton-electron transfer
  12. Effect of molding history on molecular orientation relaxation during physical aging of polystyrene injection moldings
  13. A comparative analysis of the effect of post production treatments and layer thickness on tensile and impact properties of additively manufactured polymers
  14. Fabrication of flame-retardant and smoke-suppressant rigid polyurethane foam modified by hydrolyzed keratin
  15. Study on flame retardancy and thermal stability of rigid polyurethane foams modified by amino trimethylphosphonate cobalt and expandable graphite
  16. Three-dimensional simulation of capillary rheometry for an estimation of extensional viscosity
Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2022-4258/html
Button zum nach oben scrollen