Abstract
Biodegradable polymers have become important in different fields of application, where biodegradability and biocompatibility are required. Herein, the melt spinning of biodegradable polymers including poly(lactic acid), poly(butylene succinate), polyhydroxyalkanoate (PHA), poly(ɛ-caprolactone) and their biocomposites is critically reviewed. Biodegradable polymer fibers with added functionalities are in high demand for various applications, including biomedical, textiles, and others. Melt spinning is a suitable technique for the development of biodegradable polymer fibers in a large-scale quantity, and fibers with a high surface area can be obtained with this technique. The processing variables during spinning have a considerable impact on the resulting properties of the fibers. Therefore, in this review, the processing-property relationship in biodegradable polymers, blends, and their composites is provided. The morphological characteristics, load-bearing properties, and the potential application of melt-spun biodegradable fibers in various sectors are also provided.
Funding source: Department of Science Innovation
Award Identifier / Grant number: C6ACH20
Funding source: Council for Scientific and Industrial Research
Award Identifier / Grant number: C1V0008
Funding source: University of Johannesburg
Award Identifier / Grant number: 086310
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This study was funded by Department of Science Innovation (C6ACH20), Council for Scientific and Industrial Research (C1V0008), University of Johannesburg (086310).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Aaliya, B., Sunnoj, K.V., and Lackner, M. (2021). Biopolymer composites. Int. J. Biobased Plast. 3: 40–84, https://doi.org/10.1080/24759651.2021.1881214.Suche in Google Scholar
Agrawal, B.J. (2011). Geotextile: it’s application to civil engineering-an overview. National conference on recent trends in engineering & technology. Semantic Scholar, Seattle, WA, USA.Suche in Google Scholar
Akhir, N.A.M., Othman, M., Buys, Y.F., Shaffiar, N., Jimat, D.N., and Shaharuddin, S.I.S. (2021). Characterization and melt spinning of poly (lactic acid)/poly (ethylene glycol) blends. IIUM Eng. J. 22: 201–212, https://doi.org/10.31436/iiumej.v22i1.1364.Suche in Google Scholar
Ali, A. and E-Dessouky, H. (2019). An insight on the process-property relationship of melt spun polylactic acid fibers. Text. Res. J. 89: 1–8, https://doi.org/10.1177/0040517519845684.Suche in Google Scholar
Aouat, T., Kaci, M., Devaux, E., Campagne, C., Cayla, A., Dumazert, L., and L-Cuesta, J. (2018). Morphological, mechanical, and thermal characterization of poly (lactic acid)/cellulose multifilament fibers prepared by melt spinning. Adv. Polym. Technol. 37: 21779, https://doi.org/10.1002/adv.21779.Suche in Google Scholar
Asadollahzadeh, M., Mahboubi, A., Taherzadeh, M.J., Åkesson, D., and Lennartsson, P.R. (2022). Application of fungal biomass for the development of new polylactic acid-based biocomposites. Polymers 14: 1738, https://doi.org/10.3390/polym14091738.Suche in Google Scholar PubMed PubMed Central
Catanzano, O., Acierno, S., Russo, P., Cervasio, M., Caro, M.D.B.D., Bolognese, A., Sammartino, G., Califano, L., Marenzi, G., Calignano, A., et al.. (2014). Melt-spun bioactive sutures containing nanohybrids for local delivery of anti-inflammatory drugs. Mater. Sci. Eng. C 43: 300–309, https://doi.org/10.1016/j.msec.2014.07.012.Suche in Google Scholar PubMed
Charuchinda, A., Molloy, R., Siripitayananon, J., Molloy, N., and Sriyai, M. (2003). Factors influencing the small-scale melt spinning of poly (ɛ-caprolactone) monofilament fibres. Polym. Int. 52: 1175–1181, https://doi.org/10.1002/pi.1234.Suche in Google Scholar
Daria, M., Krzysztof, L., and Jakub, M. (2020). Characteristics of biodegradable textiles used in environmental engineering: a comprehensive review. J. Clean. Prod. 268: 122129, https://doi.org/10.1016/j.jclepro.2020.122129.Suche in Google Scholar
European Biopastics, Available at: <https://www.european-biopolymers.org/market> (Accessed April 2022).Suche in Google Scholar
Feng, J., Zhang, D., Zhou, M., and Gao, C. (2017). Poly (L-lactide) melt spun fibers-aligned scaffolds coated with collagen or chitosan for guiding the directional migration of osteoblasts in vitro. J. Mater. Chem. B 5: 5176–5188, https://doi.org/10.1039/C7TB00601B.Suche in Google Scholar
Furuhashi, Y., Kimura, Y., Yoshie, N., and Yamane, H. (2006). Higher-order structures and mechanical properties of stereocomplex-type poly (lactic acid) melt spun fibers. Polymer 47: 5965–5972, https://doi.org/10.1016/j.polymer.2006.06.001.Suche in Google Scholar
Gajjar, C.R., Stallrich, J.W., Pasquinelli, M.A., and King, M.W. (2021). Process-property relationships for melt-spun poly (lactic acid) yarn. ACS Omega 6: 15920–15928, https://doi.org/10.1021/acsomega.1c01557.Suche in Google Scholar PubMed PubMed Central
Gilmore, J., Burg, T., Groff, R.E., and Burg, K.J.L. (2017). Design and optimization of a novel bio-loom to weave melt-spun adsorbable polymers for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 105: 1342–1351, https://doi.org/10.1002/jbm.b.33700.Suche in Google Scholar PubMed
Güzdemir, Ö., Bermudez, V., Kanhere, S., and Ogale, A.A. (2020). Melt-spun poly (lactic acid) fibers modified with soy fillers: toward environment-friendly disposable nonwovens. Polym. Eng. Sci. 60: 1158–1168, https://doi.org/10.1002/pen.25369.Suche in Google Scholar
Hassan, E.A., Elarabi, S.E., Wei, Y., and Yu, M. (2017). Biodegradable poly (lactic acid)/poly (butylene succinate) fibers with high elongation for health care products. Text. Res. J. 88: 1–10, https://doi.org/10.1177/0040517517708538.Suche in Google Scholar
Hinüber, C., Häussler, L., Vogel, R., Brünig, H., Heinrich, G., and Werner, C. (2011). Hollow fibers made from a poly (3-hydroxybutyrate)/poly-ɛ-caprolactone blend. Express Polym. Lett. 5: 643–652, https://doi.org/10.3144/expresspolymlett.2011.62.Suche in Google Scholar
Hottle, T.A., Bilec, M.M., and Landis, A.E. (2013). Sustainabilit assessments of bio-based polymers. Polym. Degrad. Stab. 98: 1898–1907, https://doi.org/10.1016/j.polymdegradstab.2013.06.016.Suche in Google Scholar
Hufenus, R., Reifler, F.A., M-Weber, K., Spierings, A., and Zinn, M. (2012). Biodegradable biocomponent fibers from renewable sources: melt-spinning of poly (lactic acid) and poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]. Macromol. Mater. Eng. 297: 75–84, https://doi.org/10.1002/mame.201100063.Suche in Google Scholar
Hufenus, R., Yan, Y., Dauner, M., and Kikutani, T. (2020). Melt-spun fibers for textile applications. Materials 13: 4298, https://doi.org/10.3390/ma13194298.Suche in Google Scholar PubMed PubMed Central
Iroegbu, A.O.C., Ray, S.S., Mbarane, V., Bordado, J.C., and Sardinha, J.P. (2021). Plastic pollution: a perspective on matters arising: challenges and opportunities. ACS Omega 6: 19343–19355, https://doi.org/10.1021/acsomega.1c02760.Suche in Google Scholar PubMed PubMed Central
Islam, G.M.N., Collie, S., Qasim, M., and Ali, M.A. (2020). Highly stretchable and flexible melt spun thermoplastic conductive yarns for smart textiles. Nanomaterials 10: 2324, https://doi.org/10.3390/nano10122324.Suche in Google Scholar PubMed PubMed Central
John, M.J., Anandjiwala, R., Oksman, K., and Mathew, A.P. (2013). Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties. J. Appl. Polym. Sci. 127: 274–281, https://doi.org/10.1002/app.37884.Suche in Google Scholar
Jompang, L., Thumsorn, S., On, J.W., Surin, P., Apawet, C., Chaichalermwong, T., Kaabbuathong, N., O-Charoen, N., and Srisawat, N. (2013). Poly (lactic acid) and poly (butylene succinate) blend fibers prepared by melt spinning technique. Energy Proc. 34: 493–499, https://doi.org/10.1016/j.egypro.2013.06.777.Suche in Google Scholar
Kennouche, S., Moigne, N.L., Kaci, M., Quantin, J., Caro-Bretelle, A., Delaite, C., and Lopez-Custa, J. (2016). Morphological characterization and thermal properties of compatibilized poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly (butylene succinate) (PBS)/halloysite ternary nanocomposites. Eur. Polym. J. 75: 142–162, https://doi.org/10.1016/j.eurpolymj.2015.12.009.Suche in Google Scholar
Keum, J.K. and Song, H.H. (2005). Thermal deformations of oriented noncrystalline poly (ethylene terephthalate) fibers in the presence of mesophase structure. Polymer 46: 939–945, https://doi.org/10.1016/j.polymer.2004.12.004.Suche in Google Scholar
Kim, M.S., Kim, J.C., and Kim, Y.H. (2008). Effects of take-up speed on the structure and properties of melt-spun poly (L-lactic acid) fibers. Polym. Adv. Technol. 19: 748–755, https://doi.org/10.1002/pat.1026.Suche in Google Scholar
Kirchherr, J., Reike, D., and Hekkert, M. (2017). Conceptualizing the circular economy: an analysis of 114 definitions. Resour. Conserv. Recycl. 127: 221–232, https://doi.org/10.1016/j.resconrec.2017.09.005.Suche in Google Scholar
Kumar, N. and Das, D. (2018). Nonwoven geotextiles rom nettle and poly (lactic acid) fibers for slope stabilization using bioengineering approach. Geotext. Geomembranes 46: 206–213, https://doi.org/10.1016/j.geotexmem.2017.11.007.Suche in Google Scholar
Li, L., Huang, W., Wang, B., Wei, W., Gu, Q., and Chen, P. (2015). Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer 68: 183–194, https://doi.org/10.1016/j.polymer.2015.05.024.Suche in Google Scholar
Luckachan, G.E. and Pillai, C.K.S. (2011). Biodegradable polymers – a review on recent trends and emerging perspectives. J. Polym. Environ. 19: 637–676, https://doi.org/10.1007/s10924-011-0317-1.Suche in Google Scholar
Maqsood, M. and Seide, G. (2019). Novel bicomponent functional fibers with sheath/core configuration containing intumescent flame-retardants for textile applications. Materials 12: 3095, https://doi.org/10.3390/ma12193095.Suche in Google Scholar PubMed PubMed Central
M-Garcia, A., Hooshmand, S., Skrifvars, M., Kenny, J.M., Oksman, K., and Peponi, L. (2012). Poly (lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals. RSC Adv. 6: 1–3, https://doi.org/10.1039/C5RA22818B.Suche in Google Scholar
Mtibe, A., Motloung, M.P., Bandyopadhyay, J., and Ray, S.S. (2021). Synthetic biopolymers and their composites: advantages and limitations – an overview. Macromol. Rapid Commun. 42: 2100130, https://doi.org/10.1002/marc.202100130.Suche in Google Scholar PubMed
Murariu, M. and Dubois, P. (2016). PLA composites: from production to properties. Adv. Drug Delivery Rev. 107: 17–46, https://doi.org/10.1016/j.addr.2016.04.003.Suche in Google Scholar PubMed
Naeimirad, M., Zadhoush, A., Kotek, R., Neisiany, R.E., Khorasani, S.N., and Ramakrishna, S. (2018). Recent advances in core/shell bicomponent fibers and nanofibers: a review. J. Appl. Polym. Sci. 135: 46265, https://doi.org/10.1002/app.46265.Suche in Google Scholar
Panichsombat, K., Panbangpong, W., Poompiew, N., and Potiyaraj, P. (2019). Biodegradable fibers from poly (lactic acid)/poly (butylene succinate) blends. IOP Conf. Ser. Mater. Sci. Eng. 600: 012004, https://doi.org/10.1088/1757-899X/600/1/012004.Suche in Google Scholar
Park, S.J., Lee, B.K., Na, M.H., and Kim, D.S. (2013). Melt-spun shaped fibers with enhanced surface effects: fiber fabrication, characterization and application to woven scaffolds. Acta Biomater. 9: 7719–7726, https://doi.org/10.1016/j.actbio.2013.05.001.Suche in Google Scholar PubMed
P-Art, S., Srisawat, N., O-Charoen, N., Pavasupree, S., and P-Art, W. (2011). Preparation of knitting socks from poly (lactic acid) and poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) blends for textile industrials. Energy Proc. 9: 589–597, https://doi.org/10.1016/j.egypro.2011.09.069.Suche in Google Scholar
Perret, E., Braun, O., Sharma, K., Tritsch, S., Muff, R., and Hufenus, R. (2021a). High-resolution 2D Raman mapping of mono-and bicomponent filament cross-sections. Polymer 229: 124011, https://doi.org/10.1016/j.polymer.2021.Suche in Google Scholar
Perret, E. and Hufenus, R. (2021). Insights into strain-induced solid mesophases in melt-spun fibers. Polymer 229: 124010, https://doi.org/10.1013/j.polymer.2021.124010.Suche in Google Scholar
Perret, E., Reifler, F.A., Gooneie, A., Chen, K., and Selli, F. (2020). Structural response of melt-spun poly (3-hydroxybutyrate) fibers to stress and temperature. Polymer 197: 122503, https://doi.org/10.1016/j.polymer.2020.122503.Suche in Google Scholar
Perret, E., Reifler, F.A., Gooneie, A., and Hufenus, R. (2019). Tensile study of melt-spun poly (3-hydroxybutyrate) P3HB fibers: reversible transformation of a highly oriented phase. Polymer 180: 121668, https://doi.org/10.1016/j.polymer.2019.121668.Suche in Google Scholar
Perret, E., Sharma, K., Tritsch, S., and Hufenus, R. (2021b). WAXD, polarized ATR-FTIR and DSC data of stress-annealed poly (3-hydroxybutyrate) fiber. Data Brief 39: 107523, https://doi.org/10.1016/j.dib.2021.107523.Suche in Google Scholar PubMed PubMed Central
Persson, M., Lehenkari, P.P., Berglin, L., Turunen, S., Finnilä, M.A.J., Risteli, J., Skrifvars, M., and Tuukkanen, J. (2018). Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci. Rep. 8: 10457, https://doi.org/10.1038/s41598-018-28699-x.Suche in Google Scholar PubMed PubMed Central
Persson, M., Lorite, G.S., Cho, S., Tuukkanen, J., and Skrifvars, M. (2013). Melt spinning of poly (lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties. ACS Appl. Mater. Interfaces 5: 6864–6872, https://doi.org/10.1021/am401895f.Suche in Google Scholar PubMed
Prahsarn, C., Klinsukhon, W., Padee, S., Suwannamek, N., Roungpaisan, N., and Srisawat, N. (2016). Hollow segmented-pi PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability. J. Mater. Sci. 51: 10910–10916, https://doi.org/10.1007/s10853-016-0302-0.Suche in Google Scholar
Prambauer, M., Wendeler, C., Weitzenböck, J., and Burgstaller, C. (2019a). Biodegradable geotextiles-an overview of existing and potential materials. Geotext. Geomembranes 47: 48–59, https://doi.org/10.1016/j.geotexmem.2018.09.006.Suche in Google Scholar
Prambauer, M., Hofmann, C.W.H., and Burgstaller, C. (2019b). Biodegradable geotextiles-the use of biopolymers in short-lived soil protections. In: Geotech. Eng. Found. Future, Proceedings of the XVII ECSMGE-2019, https://doi.org/10.32075/17ECSMGE-2019-0976.Suche in Google Scholar
Rizvi, R., Tong, L., and Naguib, H. (2014). Processing and properties of melt spun polylactide-multiwall carbon nanotube fiber composites. J. Polym. Sci., Part B: Polym. Phys. 52: 477–484, https://doi.org/10.1002/polb.23441.Suche in Google Scholar
Selli, F., Erdoğan, U.H., Hufenus, R., and Perret, E. (2020). Mesophase in melt-spun poly (ϵ-caprolactone) filaments: structure-mechanical property relationship. Polymer 206: 122870, https://doi.org/10.1016/j.polymer.2020.122870.Suche in Google Scholar
Selli, F., Hufenus, R., Gooneie, A., Erdoğan, U.H., and Perret, E. (2022). Structure-property relationship in melt-spun poly (hydroxybutyrate-co-3-hexanoate) monofilaments. Polymers 14: 200, https://doi.org/10.3390/polym14010200.Suche in Google Scholar PubMed PubMed Central
Shamsuyeva, M. and Endres, H. (2021). Plastics in the context of the circular economy and sustainable plastics recycling: comprehensive review on research development, standardization and market. Compos. Part C Open Access 6: 100168, https://doi.org/10.1016/j.jcomc.2021.100168.Suche in Google Scholar
Shi, X.Q., Ito, H., and Kikutani, T. (2005). Characterization on mixed-crystal structure and properties of poly (butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46: 11442–11450, https://doi.org/10.1016/j.polymer.2005.10.065.Suche in Google Scholar
Sikorska, W., Musioł, M., Z-Węgrzyńska, B., and Rydz, J. (2021). End-of-life options for (bio) degradable polymers in the circular economy. Adv. Polym. Technol. 2021: 6695140, https://doi.org/10.1155/2021/6695140.Suche in Google Scholar
Siracusa, V., Rocculi, P.P., Romani, S., and Rosa, M.D. (2008). Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 19: 634–643, https://doi.org/10.1016/j.tifs.2008.07.003.Suche in Google Scholar
Soroudi, A. and Jakubowicz, I. (2013). Recycling of bioplastics, their blends and biocomposites: a review. Eur. Polym. J. 49: 2839–2858, https://doi.org/10.1016/j.eurpolymj.2013.07.025.Suche in Google Scholar
Sukthavorn, K., Ketruam, B., Nootsuwan, N., Jongrungruangchok, S., Veranitisagul, C., and Laobuthee, A. (2021). Fabrication of green composite fibers from ground tea leaves and poly (lactic acid) as eco-friendly textiles with antibacterial property. J. Mater. Cycles Waste Manag. 23: 1964–1973, https://doi.org/10.1007/s10163-021-01269-6.Suche in Google Scholar
Tran, N.H.A., Brünig, H., Hinüber, C., and Heinrich, G. (2014). Melt spinning of biodegradable nanofibrillary structures from poly (lactic acid) and poly (vinyl alcohol) blends. Macromol. Mater. Eng. 299: 219–227, https://doi.org/10.1002/mame.201300125.Suche in Google Scholar
Tschan, M.J.-L., Brulé, E., Haquette, P., and Thomas, C.M. (2012). Synthesis of biodegradable polymer from renewable resources. Polym. Chem. 3: 836, https://doi.org/10.1039/c2py00452f.Suche in Google Scholar
Vroman, I. and Tighzert, L. (2009). Biodegradable polymers. Materials 2: 307–344, https://doi.org/10.3390/ma2020307.Suche in Google Scholar
Wiewel, B.V. and Lamoree, M. (2016). Geotextile composition, application and ecotoxicology – a review. J. Hazard. Mater. 317: 640–655, https://doi.org/10.1016/j.jhazmat.2016.04.060.Suche in Google Scholar PubMed
Wu, H., Yao, C., Li, C., Miao, M., Zhong, Y., Lu, Y., and Liu, T. (2020). Review of application and innovation of geotextiles in geotechnical engineering. Materials 13: 1774, https://doi.org/10.3390/ma13071774.Suche in Google Scholar PubMed PubMed Central
Xue, W., Chen, P., Wang, F., and Wang, L. (2019). Melt spinning of nano-hydroxyapatite and polycaprolactone composite fibers for bone scaffold application. J. Mater. Sci. 54: 8602–8612, https://doi.org/10.1007/s10853-019-034575-y.Suche in Google Scholar
Zhou, M., Fan, M., Zhao, Y., Jin, T., and Fu, Q. (2016). Effect of stretching on the mechanical properties in melt-spun poly (butylene succinate)/microfibrillated cellulose (MFC) nanocomposites. Carbohydr. Polym. 140: 383–392, https://doi.org/10.1016/j.carbpol.2015.12.040.Suche in Google Scholar PubMed
Zhu, S., Meng, X., Yan, X., and Chen, S. (2021). Evidence for bicomponent fibers: a review. E-Polymers 21: 636–653, https://doi.org/10.1515/epoly-2021-0067.Suche in Google Scholar
Zhu, Y., Romain, C., and Williams, C.K. (2016). Sustainable polymers from renewable resources. Nature 540: 354–362, https://doi.org/10.1038/nature21001.Suche in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Articles
- Electron beam processing of rubbers and their composites
- A review on graphene/rubber nanocomposites
- Recent advances on melt-spun fibers from biodegradable polymers and their composites
- Research Articles
- Toughened poly(butylene succinate)/polylactide/poly(vinyl acetate) ternary blend without sacrificing the strength
- Investigation on the sealing performance of polymers at ultra high pressures
- Effect mechanism of acidification and vulcanization on SBS-modified asphalt
- Effects of blending poly(lactic acid) and thermoplastic polyester polyurethanes on the mechanical and adhesive properties in two-component injection molding
- Mechanical and morphological characterization of sisal/kenaf/pineapple mat reinforced hybrid composites
- News
- PPS News
Artikel in diesem Heft
- Frontmatter
- Review Articles
- Electron beam processing of rubbers and their composites
- A review on graphene/rubber nanocomposites
- Recent advances on melt-spun fibers from biodegradable polymers and their composites
- Research Articles
- Toughened poly(butylene succinate)/polylactide/poly(vinyl acetate) ternary blend without sacrificing the strength
- Investigation on the sealing performance of polymers at ultra high pressures
- Effect mechanism of acidification and vulcanization on SBS-modified asphalt
- Effects of blending poly(lactic acid) and thermoplastic polyester polyurethanes on the mechanical and adhesive properties in two-component injection molding
- Mechanical and morphological characterization of sisal/kenaf/pineapple mat reinforced hybrid composites
- News
- PPS News