Startseite Recent advances on melt-spun fibers from biodegradable polymers and their composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Recent advances on melt-spun fibers from biodegradable polymers and their composites

  • Mpho Phillip Motloung , Tladi Gideon Mofokeng , Teboho Clement Mokhena und Suprakas Sinha Ray ORCID logo EMAIL logo
Veröffentlicht/Copyright: 21. September 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Biodegradable polymers have become important in different fields of application, where biodegradability and biocompatibility are required. Herein, the melt spinning of biodegradable polymers including poly(lactic acid), poly(butylene succinate), polyhydroxyalkanoate (PHA), poly(ɛ-caprolactone) and their biocomposites is critically reviewed. Biodegradable polymer fibers with added functionalities are in high demand for various applications, including biomedical, textiles, and others. Melt spinning is a suitable technique for the development of biodegradable polymer fibers in a large-scale quantity, and fibers with a high surface area can be obtained with this technique. The processing variables during spinning have a considerable impact on the resulting properties of the fibers. Therefore, in this review, the processing-property relationship in biodegradable polymers, blends, and their composites is provided. The morphological characteristics, load-bearing properties, and the potential application of melt-spun biodegradable fibers in various sectors are also provided.


Corresponding author: Suprakas Sinha Ray, Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; and Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa, E-mail:

Funding source: Department of Science Innovation

Award Identifier / Grant number: C6ACH20

Funding source: Council for Scientific and Industrial Research

Award Identifier / Grant number: C1V0008

Funding source: University of Johannesburg

Award Identifier / Grant number: 086310

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by Department of Science Innovation (C6ACH20), Council for Scientific and Industrial Research (C1V0008), University of Johannesburg (086310).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Aaliya, B., Sunnoj, K.V., and Lackner, M. (2021). Biopolymer composites. Int. J. Biobased Plast. 3: 40–84, https://doi.org/10.1080/24759651.2021.1881214.Suche in Google Scholar

Agrawal, B.J. (2011). Geotextile: it’s application to civil engineering-an overview. National conference on recent trends in engineering & technology. Semantic Scholar, Seattle, WA, USA.Suche in Google Scholar

Akhir, N.A.M., Othman, M., Buys, Y.F., Shaffiar, N., Jimat, D.N., and Shaharuddin, S.I.S. (2021). Characterization and melt spinning of poly (lactic acid)/poly (ethylene glycol) blends. IIUM Eng. J. 22: 201–212, https://doi.org/10.31436/iiumej.v22i1.1364.Suche in Google Scholar

Ali, A. and E-Dessouky, H. (2019). An insight on the process-property relationship of melt spun polylactic acid fibers. Text. Res. J. 89: 1–8, https://doi.org/10.1177/0040517519845684.Suche in Google Scholar

Aouat, T., Kaci, M., Devaux, E., Campagne, C., Cayla, A., Dumazert, L., and L-Cuesta, J. (2018). Morphological, mechanical, and thermal characterization of poly (lactic acid)/cellulose multifilament fibers prepared by melt spinning. Adv. Polym. Technol. 37: 21779, https://doi.org/10.1002/adv.21779.Suche in Google Scholar

Asadollahzadeh, M., Mahboubi, A., Taherzadeh, M.J., Åkesson, D., and Lennartsson, P.R. (2022). Application of fungal biomass for the development of new polylactic acid-based biocomposites. Polymers 14: 1738, https://doi.org/10.3390/polym14091738.Suche in Google Scholar PubMed PubMed Central

Catanzano, O., Acierno, S., Russo, P., Cervasio, M., Caro, M.D.B.D., Bolognese, A., Sammartino, G., Califano, L., Marenzi, G., Calignano, A., et al.. (2014). Melt-spun bioactive sutures containing nanohybrids for local delivery of anti-inflammatory drugs. Mater. Sci. Eng. C 43: 300–309, https://doi.org/10.1016/j.msec.2014.07.012.Suche in Google Scholar PubMed

Charuchinda, A., Molloy, R., Siripitayananon, J., Molloy, N., and Sriyai, M. (2003). Factors influencing the small-scale melt spinning of poly (ɛ-caprolactone) monofilament fibres. Polym. Int. 52: 1175–1181, https://doi.org/10.1002/pi.1234.Suche in Google Scholar

Daria, M., Krzysztof, L., and Jakub, M. (2020). Characteristics of biodegradable textiles used in environmental engineering: a comprehensive review. J. Clean. Prod. 268: 122129, https://doi.org/10.1016/j.jclepro.2020.122129.Suche in Google Scholar

European Biopastics, Available at: <https://www.european-biopolymers.org/market> (Accessed April 2022).Suche in Google Scholar

Feng, J., Zhang, D., Zhou, M., and Gao, C. (2017). Poly (L-lactide) melt spun fibers-aligned scaffolds coated with collagen or chitosan for guiding the directional migration of osteoblasts in vitro. J. Mater. Chem. B 5: 5176–5188, https://doi.org/10.1039/C7TB00601B.Suche in Google Scholar

Furuhashi, Y., Kimura, Y., Yoshie, N., and Yamane, H. (2006). Higher-order structures and mechanical properties of stereocomplex-type poly (lactic acid) melt spun fibers. Polymer 47: 5965–5972, https://doi.org/10.1016/j.polymer.2006.06.001.Suche in Google Scholar

Gajjar, C.R., Stallrich, J.W., Pasquinelli, M.A., and King, M.W. (2021). Process-property relationships for melt-spun poly (lactic acid) yarn. ACS Omega 6: 15920–15928, https://doi.org/10.1021/acsomega.1c01557.Suche in Google Scholar PubMed PubMed Central

Gilmore, J., Burg, T., Groff, R.E., and Burg, K.J.L. (2017). Design and optimization of a novel bio-loom to weave melt-spun adsorbable polymers for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 105: 1342–1351, https://doi.org/10.1002/jbm.b.33700.Suche in Google Scholar PubMed

Güzdemir, Ö., Bermudez, V., Kanhere, S., and Ogale, A.A. (2020). Melt-spun poly (lactic acid) fibers modified with soy fillers: toward environment-friendly disposable nonwovens. Polym. Eng. Sci. 60: 1158–1168, https://doi.org/10.1002/pen.25369.Suche in Google Scholar

Hassan, E.A., Elarabi, S.E., Wei, Y., and Yu, M. (2017). Biodegradable poly (lactic acid)/poly (butylene succinate) fibers with high elongation for health care products. Text. Res. J. 88: 1–10, https://doi.org/10.1177/0040517517708538.Suche in Google Scholar

Hinüber, C., Häussler, L., Vogel, R., Brünig, H., Heinrich, G., and Werner, C. (2011). Hollow fibers made from a poly (3-hydroxybutyrate)/poly-ɛ-caprolactone blend. Express Polym. Lett. 5: 643–652, https://doi.org/10.3144/expresspolymlett.2011.62.Suche in Google Scholar

Hottle, T.A., Bilec, M.M., and Landis, A.E. (2013). Sustainabilit assessments of bio-based polymers. Polym. Degrad. Stab. 98: 1898–1907, https://doi.org/10.1016/j.polymdegradstab.2013.06.016.Suche in Google Scholar

Hufenus, R., Reifler, F.A., M-Weber, K., Spierings, A., and Zinn, M. (2012). Biodegradable biocomponent fibers from renewable sources: melt-spinning of poly (lactic acid) and poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]. Macromol. Mater. Eng. 297: 75–84, https://doi.org/10.1002/mame.201100063.Suche in Google Scholar

Hufenus, R., Yan, Y., Dauner, M., and Kikutani, T. (2020). Melt-spun fibers for textile applications. Materials 13: 4298, https://doi.org/10.3390/ma13194298.Suche in Google Scholar PubMed PubMed Central

Iroegbu, A.O.C., Ray, S.S., Mbarane, V., Bordado, J.C., and Sardinha, J.P. (2021). Plastic pollution: a perspective on matters arising: challenges and opportunities. ACS Omega 6: 19343–19355, https://doi.org/10.1021/acsomega.1c02760.Suche in Google Scholar PubMed PubMed Central

Islam, G.M.N., Collie, S., Qasim, M., and Ali, M.A. (2020). Highly stretchable and flexible melt spun thermoplastic conductive yarns for smart textiles. Nanomaterials 10: 2324, https://doi.org/10.3390/nano10122324.Suche in Google Scholar PubMed PubMed Central

John, M.J., Anandjiwala, R., Oksman, K., and Mathew, A.P. (2013). Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties. J. Appl. Polym. Sci. 127: 274–281, https://doi.org/10.1002/app.37884.Suche in Google Scholar

Jompang, L., Thumsorn, S., On, J.W., Surin, P., Apawet, C., Chaichalermwong, T., Kaabbuathong, N., O-Charoen, N., and Srisawat, N. (2013). Poly (lactic acid) and poly (butylene succinate) blend fibers prepared by melt spinning technique. Energy Proc. 34: 493–499, https://doi.org/10.1016/j.egypro.2013.06.777.Suche in Google Scholar

Kennouche, S., Moigne, N.L., Kaci, M., Quantin, J., Caro-Bretelle, A., Delaite, C., and Lopez-Custa, J. (2016). Morphological characterization and thermal properties of compatibilized poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly (butylene succinate) (PBS)/halloysite ternary nanocomposites. Eur. Polym. J. 75: 142–162, https://doi.org/10.1016/j.eurpolymj.2015.12.009.Suche in Google Scholar

Keum, J.K. and Song, H.H. (2005). Thermal deformations of oriented noncrystalline poly (ethylene terephthalate) fibers in the presence of mesophase structure. Polymer 46: 939–945, https://doi.org/10.1016/j.polymer.2004.12.004.Suche in Google Scholar

Kim, M.S., Kim, J.C., and Kim, Y.H. (2008). Effects of take-up speed on the structure and properties of melt-spun poly (L-lactic acid) fibers. Polym. Adv. Technol. 19: 748–755, https://doi.org/10.1002/pat.1026.Suche in Google Scholar

Kirchherr, J., Reike, D., and Hekkert, M. (2017). Conceptualizing the circular economy: an analysis of 114 definitions. Resour. Conserv. Recycl. 127: 221–232, https://doi.org/10.1016/j.resconrec.2017.09.005.Suche in Google Scholar

Kumar, N. and Das, D. (2018). Nonwoven geotextiles rom nettle and poly (lactic acid) fibers for slope stabilization using bioengineering approach. Geotext. Geomembranes 46: 206–213, https://doi.org/10.1016/j.geotexmem.2017.11.007.Suche in Google Scholar

Li, L., Huang, W., Wang, B., Wei, W., Gu, Q., and Chen, P. (2015). Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer 68: 183–194, https://doi.org/10.1016/j.polymer.2015.05.024.Suche in Google Scholar

Luckachan, G.E. and Pillai, C.K.S. (2011). Biodegradable polymers – a review on recent trends and emerging perspectives. J. Polym. Environ. 19: 637–676, https://doi.org/10.1007/s10924-011-0317-1.Suche in Google Scholar

Maqsood, M. and Seide, G. (2019). Novel bicomponent functional fibers with sheath/core configuration containing intumescent flame-retardants for textile applications. Materials 12: 3095, https://doi.org/10.3390/ma12193095.Suche in Google Scholar PubMed PubMed Central

M-Garcia, A., Hooshmand, S., Skrifvars, M., Kenny, J.M., Oksman, K., and Peponi, L. (2012). Poly (lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals. RSC Adv. 6: 1–3, https://doi.org/10.1039/C5RA22818B.Suche in Google Scholar

Mtibe, A., Motloung, M.P., Bandyopadhyay, J., and Ray, S.S. (2021). Synthetic biopolymers and their composites: advantages and limitations – an overview. Macromol. Rapid Commun. 42: 2100130, https://doi.org/10.1002/marc.202100130.Suche in Google Scholar PubMed

Murariu, M. and Dubois, P. (2016). PLA composites: from production to properties. Adv. Drug Delivery Rev. 107: 17–46, https://doi.org/10.1016/j.addr.2016.04.003.Suche in Google Scholar PubMed

Naeimirad, M., Zadhoush, A., Kotek, R., Neisiany, R.E., Khorasani, S.N., and Ramakrishna, S. (2018). Recent advances in core/shell bicomponent fibers and nanofibers: a review. J. Appl. Polym. Sci. 135: 46265, https://doi.org/10.1002/app.46265.Suche in Google Scholar

Panichsombat, K., Panbangpong, W., Poompiew, N., and Potiyaraj, P. (2019). Biodegradable fibers from poly (lactic acid)/poly (butylene succinate) blends. IOP Conf. Ser. Mater. Sci. Eng. 600: 012004, https://doi.org/10.1088/1757-899X/600/1/012004.Suche in Google Scholar

Park, S.J., Lee, B.K., Na, M.H., and Kim, D.S. (2013). Melt-spun shaped fibers with enhanced surface effects: fiber fabrication, characterization and application to woven scaffolds. Acta Biomater. 9: 7719–7726, https://doi.org/10.1016/j.actbio.2013.05.001.Suche in Google Scholar PubMed

P-Art, S., Srisawat, N., O-Charoen, N., Pavasupree, S., and P-Art, W. (2011). Preparation of knitting socks from poly (lactic acid) and poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) blends for textile industrials. Energy Proc. 9: 589–597, https://doi.org/10.1016/j.egypro.2011.09.069.Suche in Google Scholar

Perret, E., Braun, O., Sharma, K., Tritsch, S., Muff, R., and Hufenus, R. (2021a). High-resolution 2D Raman mapping of mono-and bicomponent filament cross-sections. Polymer 229: 124011, https://doi.org/10.1016/j.polymer.2021.Suche in Google Scholar

Perret, E. and Hufenus, R. (2021). Insights into strain-induced solid mesophases in melt-spun fibers. Polymer 229: 124010, https://doi.org/10.1013/j.polymer.2021.124010.Suche in Google Scholar

Perret, E., Reifler, F.A., Gooneie, A., Chen, K., and Selli, F. (2020). Structural response of melt-spun poly (3-hydroxybutyrate) fibers to stress and temperature. Polymer 197: 122503, https://doi.org/10.1016/j.polymer.2020.122503.Suche in Google Scholar

Perret, E., Reifler, F.A., Gooneie, A., and Hufenus, R. (2019). Tensile study of melt-spun poly (3-hydroxybutyrate) P3HB fibers: reversible transformation of a highly oriented phase. Polymer 180: 121668, https://doi.org/10.1016/j.polymer.2019.121668.Suche in Google Scholar

Perret, E., Sharma, K., Tritsch, S., and Hufenus, R. (2021b). WAXD, polarized ATR-FTIR and DSC data of stress-annealed poly (3-hydroxybutyrate) fiber. Data Brief 39: 107523, https://doi.org/10.1016/j.dib.2021.107523.Suche in Google Scholar PubMed PubMed Central

Persson, M., Lehenkari, P.P., Berglin, L., Turunen, S., Finnilä, M.A.J., Risteli, J., Skrifvars, M., and Tuukkanen, J. (2018). Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci. Rep. 8: 10457, https://doi.org/10.1038/s41598-018-28699-x.Suche in Google Scholar PubMed PubMed Central

Persson, M., Lorite, G.S., Cho, S., Tuukkanen, J., and Skrifvars, M. (2013). Melt spinning of poly (lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties. ACS Appl. Mater. Interfaces 5: 6864–6872, https://doi.org/10.1021/am401895f.Suche in Google Scholar PubMed

Prahsarn, C., Klinsukhon, W., Padee, S., Suwannamek, N., Roungpaisan, N., and Srisawat, N. (2016). Hollow segmented-pi PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability. J. Mater. Sci. 51: 10910–10916, https://doi.org/10.1007/s10853-016-0302-0.Suche in Google Scholar

Prambauer, M., Wendeler, C., Weitzenböck, J., and Burgstaller, C. (2019a). Biodegradable geotextiles-an overview of existing and potential materials. Geotext. Geomembranes 47: 48–59, https://doi.org/10.1016/j.geotexmem.2018.09.006.Suche in Google Scholar

Prambauer, M., Hofmann, C.W.H., and Burgstaller, C. (2019b). Biodegradable geotextiles-the use of biopolymers in short-lived soil protections. In: Geotech. Eng. Found. Future, Proceedings of the XVII ECSMGE-2019, https://doi.org/10.32075/17ECSMGE-2019-0976.Suche in Google Scholar

Rizvi, R., Tong, L., and Naguib, H. (2014). Processing and properties of melt spun polylactide-multiwall carbon nanotube fiber composites. J. Polym. Sci., Part B: Polym. Phys. 52: 477–484, https://doi.org/10.1002/polb.23441.Suche in Google Scholar

Selli, F., Erdoğan, U.H., Hufenus, R., and Perret, E. (2020). Mesophase in melt-spun poly (ϵ-caprolactone) filaments: structure-mechanical property relationship. Polymer 206: 122870, https://doi.org/10.1016/j.polymer.2020.122870.Suche in Google Scholar

Selli, F., Hufenus, R., Gooneie, A., Erdoğan, U.H., and Perret, E. (2022). Structure-property relationship in melt-spun poly (hydroxybutyrate-co-3-hexanoate) monofilaments. Polymers 14: 200, https://doi.org/10.3390/polym14010200.Suche in Google Scholar PubMed PubMed Central

Shamsuyeva, M. and Endres, H. (2021). Plastics in the context of the circular economy and sustainable plastics recycling: comprehensive review on research development, standardization and market. Compos. Part C Open Access 6: 100168, https://doi.org/10.1016/j.jcomc.2021.100168.Suche in Google Scholar

Shi, X.Q., Ito, H., and Kikutani, T. (2005). Characterization on mixed-crystal structure and properties of poly (butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46: 11442–11450, https://doi.org/10.1016/j.polymer.2005.10.065.Suche in Google Scholar

Sikorska, W., Musioł, M., Z-Węgrzyńska, B., and Rydz, J. (2021). End-of-life options for (bio) degradable polymers in the circular economy. Adv. Polym. Technol. 2021: 6695140, https://doi.org/10.1155/2021/6695140.Suche in Google Scholar

Siracusa, V., Rocculi, P.P., Romani, S., and Rosa, M.D. (2008). Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 19: 634–643, https://doi.org/10.1016/j.tifs.2008.07.003.Suche in Google Scholar

Soroudi, A. and Jakubowicz, I. (2013). Recycling of bioplastics, their blends and biocomposites: a review. Eur. Polym. J. 49: 2839–2858, https://doi.org/10.1016/j.eurpolymj.2013.07.025.Suche in Google Scholar

Sukthavorn, K., Ketruam, B., Nootsuwan, N., Jongrungruangchok, S., Veranitisagul, C., and Laobuthee, A. (2021). Fabrication of green composite fibers from ground tea leaves and poly (lactic acid) as eco-friendly textiles with antibacterial property. J. Mater. Cycles Waste Manag. 23: 1964–1973, https://doi.org/10.1007/s10163-021-01269-6.Suche in Google Scholar

Tran, N.H.A., Brünig, H., Hinüber, C., and Heinrich, G. (2014). Melt spinning of biodegradable nanofibrillary structures from poly (lactic acid) and poly (vinyl alcohol) blends. Macromol. Mater. Eng. 299: 219–227, https://doi.org/10.1002/mame.201300125.Suche in Google Scholar

Tschan, M.J.-L., Brulé, E., Haquette, P., and Thomas, C.M. (2012). Synthesis of biodegradable polymer from renewable resources. Polym. Chem. 3: 836, https://doi.org/10.1039/c2py00452f.Suche in Google Scholar

Vroman, I. and Tighzert, L. (2009). Biodegradable polymers. Materials 2: 307–344, https://doi.org/10.3390/ma2020307.Suche in Google Scholar

Wiewel, B.V. and Lamoree, M. (2016). Geotextile composition, application and ecotoxicology – a review. J. Hazard. Mater. 317: 640–655, https://doi.org/10.1016/j.jhazmat.2016.04.060.Suche in Google Scholar PubMed

Wu, H., Yao, C., Li, C., Miao, M., Zhong, Y., Lu, Y., and Liu, T. (2020). Review of application and innovation of geotextiles in geotechnical engineering. Materials 13: 1774, https://doi.org/10.3390/ma13071774.Suche in Google Scholar PubMed PubMed Central

Xue, W., Chen, P., Wang, F., and Wang, L. (2019). Melt spinning of nano-hydroxyapatite and polycaprolactone composite fibers for bone scaffold application. J. Mater. Sci. 54: 8602–8612, https://doi.org/10.1007/s10853-019-034575-y.Suche in Google Scholar

Zhou, M., Fan, M., Zhao, Y., Jin, T., and Fu, Q. (2016). Effect of stretching on the mechanical properties in melt-spun poly (butylene succinate)/microfibrillated cellulose (MFC) nanocomposites. Carbohydr. Polym. 140: 383–392, https://doi.org/10.1016/j.carbpol.2015.12.040.Suche in Google Scholar PubMed

Zhu, S., Meng, X., Yan, X., and Chen, S. (2021). Evidence for bicomponent fibers: a review. E-Polymers 21: 636–653, https://doi.org/10.1515/epoly-2021-0067.Suche in Google Scholar

Zhu, Y., Romain, C., and Williams, C.K. (2016). Sustainable polymers from renewable resources. Nature 540: 354–362, https://doi.org/10.1038/nature21001.Suche in Google Scholar PubMed

Received: 2022-03-08
Accepted: 2022-06-26
Published Online: 2022-09-21
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2022-0023/html
Button zum nach oben scrollen