Startseite A review on graphene/rubber nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A review on graphene/rubber nanocomposites

  • Arunkumar Murugesan EMAIL logo , Jayakumari Lakshmanan Saraswathy und Ramji Chandran
Veröffentlicht/Copyright: 21. September 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The numerous combinations of different rubbers as matrix materials with graphene/graphene derivatives as nanofillers, which are used to fabricate graphene/rubber nanocomposites, are illustrated in this study. The different processing methods for producing graphene/rubber nanocomposites are investigated in depth. Furthermore, based on the results of various experiments performed with the produced graphene/rubber nanocomposites, an attempt is made to establish an outline over the influence of graphene nanofillers inside the rubber matrix. To explain the composite material characteristics, different processes, and the consequence of the incorporation of graphene/graphene derivatives nanofillers, a unique approximation has been accomplished.


Corresponding author: Arunkumar Murugesan, Department of Rubber and Plastics Technology, Anna University, Madras Institute of Technology Campus, Chennai 600 044, Tamilnadu, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alarifi, I.M. (2019). Investigation the conductivity of carbon fiber composites focusing on measurement techniques under dynamic and static loads. J. Mater. Res. Technol. 8: 4863–4893, https://doi.org/10.1016/j.jmrt.2019.08.019.Suche in Google Scholar

Allen, M.J., Tung, V.C., and Kaner, R.B. (2010). Honeycomb carbon: a review of graphene. Chem. Rev. 110: 132–145, https://doi.org/10.1021/cr900070d.Suche in Google Scholar

Anandhan, S. and Bandyopadhyay, S. (2011). Polymer nanocomposites: from synthesis to applications. In: Cuppoletti, J. (Ed.). Nanocomposites and polymers with analytical methods. InTech, London, Rijeka, Croatia, pp. 1–24. Available at: <http://www.intechopen.com/books/nanocomposites-and-polymers-with-analytical-methods/polymer-nanocomposites-from-synthesis-to-applications>.10.5772/17039Suche in Google Scholar

Araby, S., Zhang, L., Kuan, H.-C., Dai, J.-B., Majewski, P., and Ma, J. (2013). A novel approach to electrically and thermally conductive elastomers using graphene. Polymer 54: 3663–3670, https://doi.org/10.1016/j.polymer.2013.05.014.Suche in Google Scholar

Bagotia, N., Choudhary, V., and Sharma, D.K. (2018). A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym. Adv. Technol. 29: 1547–1567, https://doi.org/10.1002/pat.4277.Suche in Google Scholar

Bornstein, D. and Pazur, R.J. (2020). The sulfur reversion process in natural rubber in terms of crosslink density and crosslink density distribution. Polym. Test. 88: 106524, https://doi.org/10.1016/j.polymertesting.2020.106524.Suche in Google Scholar

Chu, H.Z. (2020). Effect of crosslink density on solubility parameters of styrene butadiene rubber and the application in pre-screening of new potential additives. Polym. Test. 81: 106253, https://doi.org/10.1016/j.polymertesting.2019.106253.Suche in Google Scholar

Habib, N.A., Jabbar, A.S., Hassan, F.L., and Intan, N.I. (2021). Crosslinking density characteristics of a nanocomposite elastomer. J. Phys.: Conf. Ser. 1795: 012072, https://doi.org/10.1088/1742-6596/1795/1/012072.Suche in Google Scholar

Hatami, K., Grady, B.P., and Ulmer, M.C. (2009). Sensor-enabled Geosynthetics: use of conducting carbon networks as geosynthetic sensors. J. Geotech. Geoenviron. Eng. 135: 863–874, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000062.Suche in Google Scholar

Hernández, M., del Mar Bernal, M., Verdejo, R., Ezquerra, T.A., and López-Manchado, M.A. (2012). Overall performance of natural rubber/graphene nanocomposites. Compos. Sci. Technol. 73: 40–46.10.1016/j.compscitech.2012.08.012Suche in Google Scholar

Hummers, W.S. and Offeman, R.E. (1958). Preparation of graphitic oxide. J. Am. Chem. Soc. 80: 1339, https://doi.org/10.1021/ja01539a017.Suche in Google Scholar

Hwang, W.-G., Wei, K.-H., and Wu, C.-M. (2004). Mechanical, thermal, and barrier properties of NBR/organosilicate nanocomposites. Polym. Eng. Sci. 44: 2117–2124, https://doi.org/10.1002/pen.20217.Suche in Google Scholar

Kang, H., Tang, Y., Yao, L., Yang, F., Fang, Q., and Hui, D. (2017). Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing. Compos. B Eng. 112: 1–7, https://doi.org/10.1016/j.compositesb.2016.12.035.Suche in Google Scholar

Kasi, E., Josephraj, F.X., Murugesan, A.K., and Pandian, B. (2021). Effect of crosslink density on cut and chip resistance of 100% SBR based tire tread compound. Mater. Plast. 58: 34–46, https://doi.org/10.37358/MP.21.1.5443.Suche in Google Scholar

Katsnelson, M.I. (2007). Graphene: carbon in two dimensions. Mater. Today 10: 20–27, https://doi.org/10.1016/S1369-7021(06)71788-6.Suche in Google Scholar

Kim, D.Y., Park, J.W., Lee, D.Y., and Seo, K.H. (2020). Correlation between the crosslink characteristics and mechanical properties of natural rubber compound via accelerators and reinforcement. Polymers 12: 2020, https://doi.org/10.3390/polym12092020.Suche in Google Scholar PubMed PubMed Central

Kotal, M., Banerjee, S.S., and Bhowmick, A.K. (2016). Functionalized graphene with polymer as unique strategy in tailoring the properties of bromobutyl rubber nanocomposites. Polymer 82: 121–132, https://doi.org/10.1016/j.polymer.2015.11.044.Suche in Google Scholar

Kumar, M.S.S., Raju, N.M.S., Sampath, P.S., and Jayakumari, L.S. (2014). Effects of nanomaterials on polymer composites – an expatiate view. Rev. Adv. Mater. Sci. 38: 40–54.Suche in Google Scholar

Li, H., Yang, L., Weng, G., Xing, W., Wu, J., and Huang, G. (2015). Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes. J. Mater. Chem. A 3: 22385–22392, https://doi.org/10.1039/C5TA05836H.Suche in Google Scholar

Li, Y., Wang, Q., Wang, T., and Pan, G. (2012). Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J. Mater. Sci. 47: 730–738, https://doi.org/10.1007/s10853-011-5846-4.Suche in Google Scholar

Lian, H., Li, S., Liu, K., Xu, L., Wang, K., and Guo, W. (2011). Study on modified graphene/butyl rubber nanocomposites. I. Preparation and characterization. Polym. Eng. Sci. 51: 2254–2260, https://doi.org/10.1002/pen.21997.Suche in Google Scholar

Lipomi, D.J., Vosgueritchian, M., Tee, B.C.-K., Hellstrom, S.L., Lee, J.A., Fox, C.H., and Bao, Z. (2011). Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6: 788–792, https://doi.org/10.1038/nnano.2011.184.Suche in Google Scholar PubMed

Liu, J., Zhao, F., Tao, Q., Cao, J., Yu, Y., and Zhang, X. (2019). Visualized simulation for the nanostructure design of flexible strain sensors: from a numerical model to experimental verification. Mater. Horiz. 6: 1892–1898, https://doi.org/10.1039/C9MH00389D.Suche in Google Scholar

Maheshkumar, K.V., Krishnamurthy, K., Sathishkumar, P., Sahoo, S., Uddin, E., Pal, S.K., and Rajasekar, R. (2014). Research updates on graphene oxide-based polymeric nanocomposites. Polym. Compos. 35: 2297–2310, https://doi.org/10.1002/pc.22899.Suche in Google Scholar

Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M. (2010). Improved synthesis of graphene oxide. ACS Nano 4: 4806–4814, https://doi.org/10.1021/nn1006368.Suche in Google Scholar PubMed

Mariam Al, A., Deepalekshmi, P., and Ali Alaa, E.-S. (2020). Polymers to improve the world and lifestyle: physical, mechanical, and chemical needs – ScienceDirect. In: Polymer science and innovative applications. Elsevier, Global, pp. 1–19. Available at: <https://www.sciencedirect.com/science/article/pii/B9780128168080000019>.10.1016/B978-0-12-816808-0.00001-9Suche in Google Scholar

Mensah, B., Gupta, K.C., Kim, H., Wang, W., Jeong, K.-U., and Nah, C. (2018). Graphene-reinforced elastomeric nanocomposites: a review. Polym. Test. 68: 160–184, https://doi.org/10.1016/j.polymertesting.2018.04.009.Suche in Google Scholar

Mensah, B., Kim, S., Arepalli, S., and Nah, C. (2014). A study of graphene oxide-reinforced rubber nanocomposite. J. Appl. Polym. Sci. 131: 40640, https://doi.org/10.1002/app.40640.Suche in Google Scholar

Noordermeer, J.W.M. (1998). Recent developments in rubber processing, leading to new applications such as the ‘green tyre’. Macromol. Symp. 127: 131–139, https://doi.org/10.1002/masy.19981270118.Suche in Google Scholar

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science 306: 666–669, https://doi.org/10.1126/science.1102896.Suche in Google Scholar PubMed

Ozbas, B., Neill, C.D., Register, R.A., Aksay, I.A., Prud’Homme, R.K., and Adamson, D.H. (2012a). Multifunctional elastomer nanocomposites with functionalized graphene single sheets. J. Polym. Sci., Part B: Polym. Phys. 50: 910–916, https://doi.org/10.1002/polb.23080.Suche in Google Scholar

Ozbas, B., Toki, S., and Prudhomme, R. (2012b). Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J. Polym. Sci., Part B: Polym. Phys. 50: 718–723. https://www.academia.edu/21208102/Strain_induced_crystallization_and_mechanical_properties_of_functionalized_graphene_sheet_filled_natural_rubber. Retrieved from https://www.academia.edu/21208102/Strain_induced_crystallization_and_mechanical_properties_of_functionalized_graphene_sheet_filled_natural_rubber.10.1002/polb.23060Suche in Google Scholar

Pérez-Rodríguez, S., Pastor, E., and Lázaro, M.J. (2018). Electrochemical behavior of the carbon black Vulcan XC-72R: influence of the surface chemistry. Int. J. Hydrogen Energy 43: 7911–7922, https://doi.org/10.1016/j.ijhydene.2018.03.040.Suche in Google Scholar

Pinnavaia, T.J. and Beall, G.W. (2000). Polymer-clay nanocomposites, 12/2000. John Wiley and Sons, Global, p. 320.Suche in Google Scholar

Ponnamma, D., Maria, H.J., Chandra, A.K., and Thomas, S. (2013). Rubber nanocomposites: latest trends and concepts. In: Visakh, P.M., Thomas, S., Chandra, A.K., and Mathew, Aji. P. (Eds.), Advances in elastomers II, advanced structured materials, Vol. 12. Springer, Berlin Heidelberg, pp. 69–107.10.1007/978-3-642-20928-4_3Suche in Google Scholar

Prud’Homme, R., Ozbas, B., Aksay, I., Register, R., and Adamson, D. (2010). Functional graphene-rubber nanocomposites, US7745528B2, Available at: https://patents.google.com/patent/US7745528B2/en.Suche in Google Scholar

Sudhamsu, K.S.K., Rao, C.L., Deshpande, A.P., and Devan, J. (2019). Experimental characterisation of leak through elastomer-metal interface. Int. J. Mater. Struct. Integr. 13: 186, https://doi.org/10.1504/IJMSI.2019.100435.Suche in Google Scholar

Tang, M., Xing, W., Wu, J., Huang, G., Xiang, K., Guo, L., and Li, G. (2015). Graphene as a prominent antioxidant for diolefin elastomers. J. Mater. Chem. A 3: 5942–5948, https://doi.org/10.1039/C4TA06991A.Suche in Google Scholar

Thomas, P.C., Tomlal Jose, E., Selvin Thomas, P., Thomas, S., and Joseph, K. (2010). High-performance nanocomposites based on arcylonitrile-butadiene rubber with fillers of different particle size: mechanical and morphological studies. Polym. Compos. 31: 1515–1524, https://doi.org/10.1002/pc.20938.Suche in Google Scholar

Valentini, L., Bittolo Bon, S., Lopez-Manchado, M.A., Verdejo, R., Pappalardo, L., Bolognini, A., Alvino, A., Borsini, S., Berardo, A., and Pugno, N.M. (2016). Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos. Sci. Technol. 128: 123–130, https://doi.org/10.1016/j.compscitech.2016.03.024.Suche in Google Scholar

Varghese, T.V., Ajith Kumar, H., Anitha, S., Ratheesh, S., Rajeev, R.S., and Lakshmana Rao, V. (2013). Reinforcement of acrylonitrile butadiene rubber using pristine few layer graphene and its hybrid fillers. Carbon 61: 476–486, https://doi.org/10.1016/j.carbon.2013.04.104.Suche in Google Scholar

Vishvanathperumal, S., Navaneethakrishnan, V., Anand, G., and Gopalakannan, S. (2020). Evaluation of crosslink density using material constants of ethylene-propylene-diene monomer/styrene-butadiene rubber with different nanoclay loading: finite element analysis-simulation and experimental. Adv. Sci. Eng. Med. 12: 632–642, https://doi.org/10.1166/asem.2020.2567.Suche in Google Scholar

Witt, N., Tang, Y., Ye, L., and Fang, L. (2013). Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Mater. Des. 45: 548–554, https://doi.org/10.1016/j.matdes.2012.09.029.Suche in Google Scholar

Wu, J., Huang, G., Li, H., Wu, S., Liu, Y., and Zheng, J. (2013a). Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer 54: 1930–1937, https://doi.org/10.1016/j.polymer.2013.01.049.Suche in Google Scholar

Wu, J., Xing, W., Huang, G., Li, H., Tang, M., Wu, S., and Liu, Y. (2013b). Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer 54: 3314–3323, https://doi.org/10.1016/j.polymer.2013.04.044.Suche in Google Scholar

Xie, Z.-T., Fu, X., Wei, L.-Y., Luo, M.-C., Liu, Y.-H., Ling, F.-W., Huang, C., Huang, G., and Wu, J. (2017). New evidence disclosed for the engineered strong interfacial interaction of graphene/rubber nanocomposites. Polymer 118: 30–39, https://doi.org/10.1016/j.polymer.2017.04.056.Suche in Google Scholar

Xie, Z.-T., Luo, M.-C., Huang, C., Wei, L.-Y., Liu, Y.-H., Fu, X., Huang, G., and Wu, J. (2018). Effects of graphene oxide on the strain-induced crystallization and mechanical properties of natural rubber crosslinked by different vulcanization systems. Polymer 151: 279–286, https://doi.org/10.1016/j.polymer.2018.07.067.Suche in Google Scholar

Xing, W., Li, H., Huang, G., Cai, L.-H., and Wu, J. (2017). Graphene oxide induced crosslinking and reinforcement of elastomers. Compos. Sci. Technol. 144: 223–229, https://doi.org/10.1016/j.compscitech.2017.03.006.Suche in Google Scholar

Xing, W., Tang, M., Wu, J., Huang, G., Li, H., Lei, Z., Fu, X., and Li, H. (2014). Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method. Compos. Sci. Technol. 99: 67–74, https://doi.org/10.1016/j.compscitech.2014.05.011.Suche in Google Scholar

Yan, N., Buonocore, G., Lavorgna, M., Kaciulis, S., Balijepalli, S.K., Zhan, Y., Xia, H., and Ambrosio, L. (2014). The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 102: 74–81, https://doi.org/10.1016/j.compscitech.2014.07.021.Suche in Google Scholar

Yan, P., Yujia, H., Qi, W., Yong, Z., Guangsu, H., Qichao, R., and Jinrong, W. (2020). Recyclable, self-healing, absorption-dominated and highly effective electromagnetic shielding elastomers based on bridged micro capacitance structures. Carbon 166: 56–63, https://doi.org/10.1016/j.carbon.2020.04.091.Suche in Google Scholar

Yang, J., Tian, M., Jia, Q.-X., Zhang, L.-Q., and Li, X.-L. (2006). Influence of graphite particle size and shape on the properties of NBR. J. Appl. Polym. Sci. 102: 4007–4015, https://doi.org/10.1002/app.24844.Suche in Google Scholar

Yang, Z., Liu, J., Liao, R., Yang, G., Wu, X., Tang, Z., Guo, B., Zhang, L., Ma, Y., Nie, Q., et al.. (2016). Rational design of covalent interfaces for graphene/elastomer nanocomposites. Compos. Sci. Technol. 132: 68–75, https://doi.org/10.1016/j.compscitech.2016.06.015.Suche in Google Scholar

Zhang, H., Xing, W., Li, H., Xie, Z., Huang, G., and Wu, J. (2019). Fundamental researches on graphene/rubber nanocomposites. Adv. Ind. Eng. Polym. Res. 2: 32–41, https://doi.org/10.1016/j.aiepr.2019.01.001.Suche in Google Scholar

Zhang, L., Li, H., Lai, X., Liao, X., Wang, J., Su, X., Liu, H., Wu, W., and Zeng, X. (2018). Functionalized graphene as an effective antioxidant in natural rubber. Compos. A Appl. Sci. Manuf. 107: 47–54, https://doi.org/10.1016/j.compositesa.2017.12.028.Suche in Google Scholar

Zhang, X., Wang, J., Jia, H., You, S., Xiong, X., Ding, L., and Xu, Z. (2016). Multifunctional nanocomposites between natural rubber and polyvinyl pyrrolidone modified graphene. Compos. B Eng. 84: 121–129, https://doi.org/10.1016/j.compositesb.2015.08.077.Suche in Google Scholar

Zhu, Y., Wei, L.-Y., Fu, X., Zhang, J.-Q., Kong, L.-M., Huang, G.-S., and Wu, J.-R. (2021). Super strong and tough elastomers enabled by sacrificial segregated network. Chin. J. Polym. Sci. 39: 377–386, https://doi.org/10.1007/s10118-020-2484-9.Suche in Google Scholar

Received: 2022-01-26
Accepted: 2022-06-17
Published Online: 2022-09-21
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2022-0008/html
Button zum nach oben scrollen