Article
Publicly Available
Frontmatter
Published/Copyright:
November 25, 2022
Published Online: 2022-11-25
Published in Print: 2022-12-16
©2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Research Articles
- Coordinated target tracking in sensor networks by maximizing mutual information
- Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties
- Computational study of intravenous magnetic drug targeting using implanted magnetizable stent
- Extended logistic map for encryption of digital images
- Valuation of the American put option as a free boundary problem through a high-order difference scheme
- Power minimization of gas transmission network in fully transient state using metaheuristic methods
- A priori error estimates for finite element approximations to transient convection-diffusion-reaction equations in fluidized beds
- Higher order rogue waves for the(3 + 1)-dimensional Jimbo–Miwa equation
- Dynamic characteristics of supersonic turbulent free jets from four types of circular nozzles
- New insights into singularity analysis
- Chaos and bifurcations in a discretized fractional model of quasi-periodic plasma perturbations
- Wavelet collocation methods for solving neutral delay differential equations
- Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method
- Solving nonlinear third-order boundary value problems based-on boundary shape functions
- Positive radial solutions for Dirichlet problems involving the mean curvature operator in Minkowski space
- Effect of outlet impeller diameter on performance prediction of centrifugal pump under single-phase and cavitation flow conditions
- A fractional-order ship power system: chaos and its dynamical properties
- Graphical structure of extended b-metric spaces: an application to the transverse oscillations of a homogeneous bar
- Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations
- Modelling and numerical synchronization of chaotic system with fractional-order operator
Articles in the same Issue
- Frontmatter
- Original Research Articles
- Coordinated target tracking in sensor networks by maximizing mutual information
- Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties
- Computational study of intravenous magnetic drug targeting using implanted magnetizable stent
- Extended logistic map for encryption of digital images
- Valuation of the American put option as a free boundary problem through a high-order difference scheme
- Power minimization of gas transmission network in fully transient state using metaheuristic methods
- A priori error estimates for finite element approximations to transient convection-diffusion-reaction equations in fluidized beds
- Higher order rogue waves for the(3 + 1)-dimensional Jimbo–Miwa equation
- Dynamic characteristics of supersonic turbulent free jets from four types of circular nozzles
- New insights into singularity analysis
- Chaos and bifurcations in a discretized fractional model of quasi-periodic plasma perturbations
- Wavelet collocation methods for solving neutral delay differential equations
- Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method
- Solving nonlinear third-order boundary value problems based-on boundary shape functions
- Positive radial solutions for Dirichlet problems involving the mean curvature operator in Minkowski space
- Effect of outlet impeller diameter on performance prediction of centrifugal pump under single-phase and cavitation flow conditions
- A fractional-order ship power system: chaos and its dynamical properties
- Graphical structure of extended b-metric spaces: an application to the transverse oscillations of a homogeneous bar
- Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations
- Modelling and numerical synchronization of chaotic system with fractional-order operator