Home Valuation of the American put option as a free boundary problem through a high-order difference scheme
Article
Licensed
Unlicensed Requires Authentication

Valuation of the American put option as a free boundary problem through a high-order difference scheme

  • Murat Sari ORCID logo and Seda Gulen ORCID logo EMAIL logo
Published/Copyright: November 29, 2021

Abstract

Valuation of the American options encountered commonly in finance is quite difficult due to the possibility of early exercise alternatives. Since an exact solution for the American options does not exist, effective numerical methods are needed to understand the behavior of option pricing models. Therefore, in this paper, a new approach based on a high-order difference scheme is proposed to discuss the valuation of an American put option as a free boundary problem. Using a front-fixing approach that transforms the unknown free boundary (optimal stopping) into a fixed one, a sixth-order finite difference scheme (FD6) in space and a third-order strong-stability preserving Runge–Kutta (SSPRK3) in time are applied to the model converted to a nonlinear partial differential equation. The computed results revealed that the combined method is seen to attempt to pull up the capacity of the algorithm to achieve higher accuracy. It is seen that the quantitative and qualitative results produced by the method proposed with minimal computational effort are sufficiently accurate and meaningful. Therefore, this article provides some new insights about the physical characteristics of financial problems and such realistic phenomena.

2010 Mathematics Subject Classification: 35Q91; 65M06

Corresponding author: Seda Gulen, Department of Mathematics, Faculty of Arts and Science, Tekirdag Namik Kemal University, Tekirdag, Turkey, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. Zhao, M. Davidson, and R. M. Corless, “Compact finite difference method for American option pricing,” J. Comput. Appl. Math., vol. 206, pp. 306–321, 2007. https://doi.org/10.1016/j.cam.2006.07.006.Search in Google Scholar

[2] R. C. Merton, “Theory of rational option pricing,” Bell J. Econ. Manag. Sci., vol. 4, pp. 141–183, 1973. https://doi.org/10.2307/3003143.Search in Google Scholar

[3] J. Crank, Free and Moving Boundary Problems, Oxford, Clarendon Press, 1987.Search in Google Scholar

[4] J. M. Hill, One-dimensional Stefan Problems: An Introduction, Harlow, Longman Scientific & Technical, 1987.Search in Google Scholar

[5] A. Esen and S. Kutluay, “A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method,” Appl. Math. Comput., vol. 148, pp. 321–329, 2004. https://doi.org/10.1016/s0096-3003(02)00846-9.Search in Google Scholar

[6] S. Gulen and T. Ozis, “Solution of a moving boundary problem for soybean hydration by numerical approximation,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 21, pp. 115–122, 2020. https://doi.org/10.1515/ijnsns-2017-0277.Search in Google Scholar

[7] R. Geske and H. Johnson, “The American put option valued analytically,” J. Finance, vol. 39, pp. 1511–1524, 1984. https://doi.org/10.1111/j.1540-6261.1984.tb04921.x.Search in Google Scholar

[8] P. Carr, R. Jarrow, and R. Myneni, “Alternative characterizations of American put options,” Math. Finance, vol. 2, pp. 87–106, 1992. https://doi.org/10.1111/j.1467-9965.1992.tb00040.x.Search in Google Scholar

[9] S. D. Jacka, “Optimal stopping and American put,” Math. Finance, vol. 1, pp. 1–14, 1991. https://doi.org/10.1111/j.1467-9965.1991.tb00007.x.Search in Google Scholar

[10] I. J. Kim, “The analytical valuation of American puts,” Rev. Financ. Stud., vol. 3, pp. 547–572, 1990. https://doi.org/10.1093/rfs/3.4.547.Search in Google Scholar

[11] L. W. MacMillan, “An analytic approximation for the American put price,” Adv. Futures Options Res., vol. 1, pp. 119–139, 1986.Search in Google Scholar

[12] G. Barone-Adesi and R. Whaley, “Efficient analytical approximation of American option values,” J. Finance, vol. 42, pp. 301–320, 1987. https://doi.org/10.1111/j.1540-6261.1987.tb02569.x.Search in Google Scholar

[13] S. P. Zhu, “A new analytical approximation formula for the optimal exercise boundary of American put options,” Int. J. Theor. Appl. Finance, vol. 9, pp. 1141–1177, 2006. https://doi.org/10.1142/s0219024906003962.Search in Google Scholar

[14] D. S. Bunch and H. Johnson, “The American put option and its critical stock price,” J. Finance, vol. 5, pp. 2333–2356, 2000. https://doi.org/10.1111/0022-1082.00289.Search in Google Scholar

[15] H. P. McKean, “Appendix: a free boundary problem for the heat equation arising from a problem in mathematical economics,” Ind. Mgmt. Rev., vol. 6, pp. 32–39, 1965.Search in Google Scholar

[16] R. Roll, “An analytic valuation formula for unprotected American call options on stocks with known dividends,” J. Finance Econ., vol. 5, pp. 251–258, 1977. https://doi.org/10.1016/0304-405x(77)90021-6.Search in Google Scholar

[17] H. E. Johnson, “An analytic approximation for the American put price,” J. Financ. Quant. Anal., vol. 18, pp. 141–148, 1983. https://doi.org/10.2307/2330809.Search in Google Scholar

[18] I. Karatzas, “On the pricing American options,” Appl. Math. Optim., vol. 17, pp. 37–60, 1988. https://doi.org/10.1007/bf01448358.Search in Google Scholar

[19] M. Brodie and J. Detemple, “American option valuation: new bounds, approximations, and a comparison of existing method,” Rev. Financ. Stud., vol. 9, pp. 1211–1250, 1996.10.1093/rfs/9.4.1211Search in Google Scholar

[20] J. Z. Huang, M. G. Subrahmanyam, and G. G. Yu, “Pricing and hedging American options: a recursive integration method,” Rev. Financ. Stud., vol. 9, pp. 277–300, 1996. https://doi.org/10.1093/rfs/9.1.277.Search in Google Scholar

[21] R. A. Kuske and J. B. Keller, “Optimal exercise boundary for an American put option,” Appl. Math. Finance, vol. 5, pp. 107–116, 1998. https://doi.org/10.1080/135048698334673.Search in Google Scholar

[22] R. Panini and R. P. Srivastav, “Option pricing with Mellin transforms,” Math. Comput. Model., vol. 40, pp. 43–56, 2004. https://doi.org/10.1016/j.mcm.2004.07.008.Search in Google Scholar

[23] S. P. Zhu, “An exact and explicit solution for the valuation of American put options,” Quant. Finance, vol. 6, pp. 229–242, 2007.10.1080/14697680600699811Search in Google Scholar

[24] J. E. Zhang and L. Tiecheng, “Pricing and hedging American options analytically: a pertubation method,” Math. Finance, vol. 20, pp. 59–87, 2010. https://doi.org/10.1111/j.1467-9965.2009.00389.x.Search in Google Scholar

[25] A. Medvedev and O. Scaillet, “Pricing American options under stochastic volatility and stochastic interest rates,” J. Finance Econ., vol. 98, pp. 145–159, 2010. https://doi.org/10.1016/j.jfineco.2010.03.017.Search in Google Scholar

[26] G. Wang, X. Wang, and Z. Liu, “Pricing vulnerable American put options under jump-diffusion processes,” Probab. Eng. Inf. Sci., vol. 31, pp. 121–138, 2017. https://doi.org/10.1017/s0269964816000486.Search in Google Scholar

[27] M. H. Hiang, H. H. Fu, Y. T. Huang, C. L. Lo, and P. T. Shih, “Analytical approximations for American options: the binary power option approach,” J. Financ. Stud., vol. 26, pp. 91–116, 2018.Search in Google Scholar

[28] M. Brennan and E. Schwartz, “The valuation of American put options,” J. Finance, vol. 32, pp. 449–462, 1977. https://doi.org/10.2307/2326779.Search in Google Scholar

[29] M. Brennan and E. Schwartz, “Finite difference methods and jump processes arising in the pricing of contingent claims: a synthesis,” J. Financ. Quant. Anal., vol. 13, pp. 461–474, 1978. https://doi.org/10.2307/2330152.Search in Google Scholar

[30] E. S. Schwartz, “The valuation of warrants: implementing a new approach,” J. Finance Econ., vol. 4, pp. 79–93, 1977. https://doi.org/10.1016/0304-405x(77)90037-x.Search in Google Scholar

[31] P. Jaillet, D. Lamberton, and B. Lapeyre, “Variational inequalities and the pricing of American options,” Acta Appl. Math., vol. 21, pp. 263–289, 1990. https://doi.org/10.1007/bf00047211.Search in Google Scholar

[32] J. Hull and A. White, “Valuing derivative securities using the explicit finite difference method,” J. Financ. Quant. Anal., pp. 87–100, 1990. https://doi.org/10.2307/2330889.Search in Google Scholar

[33] H. Han and X. Wu, “A fast numerical method for the Black–Scholes equation of American options,” SIAM J. Numer. Anal., vol. 41, pp. 2081–2095, 2003. https://doi.org/10.1137/s0036142901390238.Search in Google Scholar

[34] K. N. Pantazopoulos, E. N. Houstic, and S. Kortesis, “Front-tracking finite difference methods for the valuation of American options,” Comput. Econ., vol. 12, pp. 255–273, 1998. https://doi.org/10.1023/a:1008695215988.10.1023/A:1008695215988Search in Google Scholar

[35] D. Y. Tangman, A. Gopaul, and M. Bhurut, “A fast high-order finite difference algorithm for pricing American options,” J. Comput. Appl. Math., vol. 222, pp. 17–29, 2008. https://doi.org/10.1016/j.cam.2007.10.044.Search in Google Scholar

[36] B. J. Kim, C. Ahn, and H. J. Choe, “Direct computation for American put option and free boundary using finite difference method,” Jpn. J. Ind. Appl. Math., vol. 30, pp. 21–37, 2013. https://doi.org/10.1007/s13160-012-0094-9.Search in Google Scholar

[37] S. Ikonen and J. Toivanen, “Operator splitting methods for American option pricing,” Appl. Math. Lett., vol. 17, pp. 809–814, 2004. https://doi.org/10.1016/j.aml.2004.06.010.Search in Google Scholar

[38] Z. Cen and C. Wenting, “A HODIE finite difference scheme for pricing American options,” Adv. Differ. Equ., vol. 67, pp. 1–17, 2019. https://doi.org/10.1186/s13662-018-1917-z.Search in Google Scholar

[39] D. Y. Tangman, A. Gopaul, and M. Bhuruth, “Numerical pricing of options using high-order compact finite difference schemes,” J. Comput. Appl. Math., vol. 218, pp. 270–280, 2008. https://doi.org/10.1016/j.cam.2007.01.035.Search in Google Scholar

[40] L. Wu and Y. K. Kwok, “A front-fixing finite difference method for the valuation of American options,” J. Finan. Eng., vol. 6, pp. 83–97, 1997.Search in Google Scholar

[41] H. G. Landau, “Heat conduction in a melting solid,” Q. Appl. Math., vol. 8, pp. 81–94, 1950. https://doi.org/10.1090/qam/33441.Search in Google Scholar

[42] B. F. Nielsen, O. Skavhaug, and A. Tveito, “Penalty and front-fixing methods for the numerical solution of American option problems,” J. Comput. Finance, vol. 5, pp. 69–97, 2002. https://doi.org/10.21314/jcf.2002.084.Search in Google Scholar

[43] D. Sevcovic, “An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black–Scholes equation,” Can. Appl. Math. Q., vol. 15, pp. 77–97, 2007.10.2139/ssrn.1239078Search in Google Scholar

[44] S. P. Zhu and J. Zhang, “A new predictor-corrector scheme for valuing American puts,” Appl. Math. Comput., vol. 217, pp. 4439–4452, 2011. https://doi.org/10.1016/j.amc.2010.10.044.Search in Google Scholar

[45] R. Company, V. N. Egorova, and L. Jodar, “Solving American option pricing models by the front-fixing method: numerical analysis and computing,” Abstr. Appl. Anal., vol. 2014, p. 9, 2014. https://doi.org/10.1155/2014/146745.Search in Google Scholar

[46] E. Dremkova and M. Ehrhardt, “A high-order compact method for nonlinear Black–Scholes option pricing equations of American options,” Int. J. Comput. Math., vol. 88, pp. 2782–2797, 2011. https://doi.org/10.1080/00207160.2011.558574.Search in Google Scholar

[47] S. P. Zhu and W. T. Chen, “A predictor-corrector scheme based on the ADI method for pricing American puts with stochastic volatility,” Comput. Math. Appl., vol. 62, pp. 1–26, 2011. https://doi.org/10.1016/j.camwa.2011.03.101.Search in Google Scholar

[48] P. Wilmott, S. Howison, and J. Dewynne, The Mathematics of Financial Derivatives, New York, Cambridge University Press, 1995.10.1017/CBO9780511812545Search in Google Scholar

[49] J. C. Hull, Options, Futures, and Other Derivatives, London, Prentice-Hall Int. Inc, 1989.Search in Google Scholar

[50] D. Duffie, Dynamic Asset Pricing Theory, New Jersey, Princeton University Press, 1996.Search in Google Scholar

[51] D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method, New York, John Wiley & Sons, 2000.Search in Google Scholar

[52] J. Barraquand and T. Pudet, Pricing of American Path-dependent Contingent Claims, Paris, Digital Research Laboratory, 1994.Search in Google Scholar

[53] M. Brodie and J. Detemple, “American option valuation: new bounds, approximations, and a comparison of existing methods,” Rev. Financ. Stud., vol. 9, pp. 1211–1250, 1996.10.1093/rfs/9.4.1211Search in Google Scholar

[54] R. Zvan, P. A. Forsyth, and K. R. Vetzal, “Penalty methods for American options with stochastic volatility,” J. Comp. Econ., vol. 3, pp. 91–110, 1999. https://doi.org/10.21314/jcf.1999.036.Search in Google Scholar

[55] Y. I. Zhu, H. Ren, and H. Xu, “Improved effectiveness evaluating American options by the singularity-separating method,” Technical Report, Charlotte, University of North Carolina, 1997.Search in Google Scholar

[56] P. A. Forsyth and K. R. Vetzal, “Quadratic convergence of a penalty method for valuing American options,” SIAM J. Sci. Comput., vol. 23, pp. 2096–2123, 2002. https://doi.org/10.1137/s1064827500382324.Search in Google Scholar

[57] K. Amin and A. Khanna, “Convergence of American option values from discrete to continuous-time financial models,” Math. Finance, vol. 4, pp. 289–304, 1994. https://doi.org/10.1111/j.1467-9965.1994.tb00059.x.Search in Google Scholar

[58] J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: a simplified approach,” J. Finance Econ., vol. 7, pp. 229–263, 1979. https://doi.org/10.1016/0304-405x(79)90015-1.Search in Google Scholar

[59] B. J. Kim, Y. K. Ma, and H. J. Choe, “A simple numerical method for pricing an American put option,” J. Appl. Math., vol. 2013, p. 7, 2013. https://doi.org/10.1155/2013/128025.Search in Google Scholar

[60] M. A. Sullivan, “Valuing American put options using Gaussian quadrature,” Rev. Financ. Stud., vol. 13, pp. 75–94, 2000. https://doi.org/10.1093/rfs/13.1.75.Search in Google Scholar

[61] M. Hajipour and A. Malek, “Efficient high-order numerical methods for pricing of options,” Comput. Econ., vol. 45, pp. 31–47, 2011.10.1007/s10614-013-9405-8Search in Google Scholar

[62] R. Kangro and R. Nicolaides, “Far field boundary conditions for Black–Scholes equations,” SIAM J. Numer. Anal., vol. 38, pp. 1357–1368, 2000. https://doi.org/10.1137/s0036142999355921.Search in Google Scholar

[63] S. Gottlieb, C. W. Shu, and E. Tadmor, “Strong-stability preserving high-order time discretization methods,” SIAM Rev., vol. 43, pp. 89–112, 2001. https://doi.org/10.1137/s003614450036757x.Search in Google Scholar

[64] A. Zeytinoglu, M. Sari, and B. P. Allahverdiev, “Numerical simulations of shock wave propagating by a hybrid approximation based on high-order finite difference schemes,” Acta Phys. Pol. A, vol. 133, pp. 140–151, 2018. https://doi.org/10.12693/aphyspola.133.140.Search in Google Scholar

[65] A. Jameson and W. L. Wan, “Monotonicity preserving and total variation diminishing multigrid time stepping methods,” Technical Report CS-2001-11, Department of Computer Science, University of Waterloo, 2001.Search in Google Scholar

[66] Y. K. Kwok, Mathematical Models of Financial Derivatives, 2nd ed. Berlin, Springer, 2008.Search in Google Scholar

[67] G. Barles, J. R. M. Burdeau, and N. Samscen, “Critical stock price near expiration,” Math. Finance, vol. 5, pp. 77–95, 1995. https://doi.org/10.1111/j.1467-9965.1995.tb00103.x.Search in Google Scholar

[68] F. A. A. E. Saib, Y. D. Tangman, N. Thakoor, and M. Bhuruth, “On some finite difference algorithms for pricing American options and their implementation in mathematica,” in Proceedings of the 11th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE’11), 2011.Search in Google Scholar

Received: 2020-03-01
Accepted: 2021-09-22
Published Online: 2021-11-29
Published in Print: 2022-12-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Articles
  3. Coordinated target tracking in sensor networks by maximizing mutual information
  4. Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties
  5. Computational study of intravenous magnetic drug targeting using implanted magnetizable stent
  6. Extended logistic map for encryption of digital images
  7. Valuation of the American put option as a free boundary problem through a high-order difference scheme
  8. Power minimization of gas transmission network in fully transient state using metaheuristic methods
  9. A priori error estimates for finite element approximations to transient convection-diffusion-reaction equations in fluidized beds
  10. Higher order rogue waves for the(3 + 1)-dimensional Jimbo–Miwa equation
  11. Dynamic characteristics of supersonic turbulent free jets from four types of circular nozzles
  12. New insights into singularity analysis
  13. Chaos and bifurcations in a discretized fractional model of quasi-periodic plasma perturbations
  14. Wavelet collocation methods for solving neutral delay differential equations
  15. Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method
  16. Solving nonlinear third-order boundary value problems based-on boundary shape functions
  17. Positive radial solutions for Dirichlet problems involving the mean curvature operator in Minkowski space
  18. Effect of outlet impeller diameter on performance prediction of centrifugal pump under single-phase and cavitation flow conditions
  19. A fractional-order ship power system: chaos and its dynamical properties
  20. Graphical structure of extended b-metric spaces: an application to the transverse oscillations of a homogeneous bar
  21. Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations
  22. Modelling and numerical synchronization of chaotic system with fractional-order operator
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0252/html
Scroll to top button