Home New insights into singularity analysis
Article
Licensed
Unlicensed Requires Authentication

New insights into singularity analysis

  • Amlan K. Halder ORCID logo EMAIL logo , Andronikos Paliathanasis ORCID logo and Peter G. L. Leach
Published/Copyright: August 9, 2021

Abstract

In this work, we emphasize the use of singularity analysis in obtaining analytic solutions for equations for which standard Lie point symmetry analysis fails to make any lucid decision. We study the higher-dimensional Kadomtsev–Petviashvili, Boussinesq, and Kaup–Kupershmidt equations in a more general sense. With higher-order equations, there can be a commensurate number of resonances and when consistency for the full equation is examined at each resonance the constant of integration is supposed to vanish from the expression so that it remains arbitrary, but if there is an instance of this not happening, the consistency can be partially established by giving the offending constant the value from the defining equation. If consistency is otherwise not compromised, the equation can be said to be partially integrable, i.e., integrable on a surface of the complex space. Furthermore, we propose an approach that is meant to magnify the scope of singularity analysis for equations admitting higher values for resonances or positive leading-order exponent.

1991 Mathematics Subject Classification: 34A05; 34A34; 34C14; 22E60; 35B06; 35C05; 35C07

Corresponding author: Amlan K. Halder, Department of Mathematics, Pondicherry University, Puducherry 605014, India, E-mail:

Funding source: UGC (India)

Award Identifier / Grant number: F1-17.1/201718/RGNF-2017-18-SC-ORI-39488

Funding source: National Research Foundation of South Africa

Funding source: University of KwaZulu-Natal

Acknowledgments

AKH dedicate this work to Late Prof. K. M.Tamizhmani, on the occasion of his 65th birth anniversary to commemorate him.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: AKH acknowledges the financial support of UGC (India), NFSC, Award No. F1-17.1/201718/RGNF-2017-18-SC-ORI-39488. PGLL acknowledges the support of the National Research Foundation of South Africa, the University of KwaZulu-Natal, and the Durban University of Technology.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A: Computation of resonances for Eq. (6.5)

The resultant equation for the computation of resonances is

0 = 14 a 7 ( x x 0 ) 21 4 2187 a 3 μ 1 μ 2 μ 4 4 32 ( x x 0 ) 21 4 243 a 5 μ 1 2 μ 4 2 x 4 ( x x 0 ) 19 4 + 63 a 6 μ 1 μ 4 ( x x 0 ) 9 2 81 a 5 μ 1 2 μ 4 2 ( x x 0 ) 15 4 98 a 6 m ( x x 0 ) 21 4 + s 6561 a 2 μ 1 μ 2 μ 4 4 m ( x x 0 ) 21 4 + s 32 + 9477 a 2 μ 1 μ 2 μ 4 4 m s ( x x 0 ) 21 4 + s 8 + 6561 4 a 2 μ 1 μ 2 μ 4 4 m s 2 ( x x 0 ) 21 4 + s + 729 a 2 μ 1 μ 2 μ 4 4 m s 3 ( x x 0 ) 21 4 + s 1215 4 a 4 μ 1 2 μ 4 2 m x ( x x 0 ) 19 4 + s + 81 a 4 μ 1 2 μ 4 2 m s x ( x x 0 ) 19 4 + s + 378 a 5 μ 1 μ 4 m ( x x 0 ) 9 2 + s 405 a 4 μ 1 2 μ 4 2 m ( x x 0 ) 15 4 + s 294 a 5 m 2 ( x x 0 ) 21 4 + 2 s 6561 32 a μ 1 μ 2 μ 4 4 m 2 ( x x 0 ) 21 4 + 2 s + 9477 4 a μ 1 μ 2 μ 4 4 m 2 s ( x x 0 ) 21 4 + 2 s 12393 4 a μ 1 μ 2 μ 4 4 m 2 s 2 ( x x 0 ) 21 4 + 2 s 5832 a μ 1 μ 2 μ 4 4 m 2 s 3 ( x x 0 ) 21 4 + 2 s 1215 2 a 3 μ 1 2 μ 4 2 m 2 x ( x x 0 ) 19 4 + 2 s + 324 a 3 μ 1 2 μ 4 2 m 2 s x ( x x 0 ) 19 4 + 2 s + 945 a 4 μ 1 μ 4 m 2 ( x x 0 ) 9 2 + 2 s 810 a 3 μ 1 2 μ 4 2 m 2 ( x x 0 ) 15 4 + 2 s 490 a 4 m 3 ( x x 0 ) 21 4 + 3 s 2187 32 μ 1 μ 2 μ 4 4 m 3 ( x x 0 ) 21 4 + 3 s + 9477 8 μ 1 μ 2 μ 4 4 m 3 s ( x x 0 ) 21 4 + 3 s 9477 2 μ 1 μ 2 μ 4 4 m 3 s 2 ( x x 0 ) 21 4 + 3 s + 4374 μ 1 μ 2 μ 4 4 m 3 s 3 ( x x 0 ) 21 4 + 3 s 1215 2 a 2 μ 1 2 μ 4 2 m 3 x ( x x 0 ) 19 4 + 3 s + 486 a 2 μ 1 2 μ 4 2 m 3 s x ( x x 0 ) 19 4 + 3 s + 1260 a 3 μ 1 μ 4 m 3 ( x x 0 ) 9 2 + 3 s 810 a 2 μ 1 2 μ 4 2 m 3 ( x x 0 ) 15 4 + 3 s 490 a 3 m 4 ( x x 0 ) 21 4 + 4 s 1215 4 a μ 1 2 μ 4 2 m 4 x ( x x 0 ) 19 4 + 4 s + 324 a μ 1 2 μ 4 2 m 4 s x ( x x 0 ) 19 4 + 4 s + 945 a 2 μ 1 μ 4 m 4 ( x x 0 ) 9 2 + 4 s 405 a μ 1 2 μ 4 2 m 4 ( x x 0 ) 15 4 + 4 s 294 a 2 m 5 ( x x 0 ) 21 4 + 5 s 243 4 μ 1 2 μ 4 2 m 5 x ( x x 0 ) 19 4 + 5 s + 81 μ 1 2 μ 4 2 m 5 s x ( x x 0 ) 19 4 + 5 s + 378 a μ 1 μ 4 m 5 ( x x 0 ) 9 2 + 5 s 81 μ 1 2 μ 4 2 m 5 ( x x 0 ) 15 4 + 5 s 98 a m 6 ( x x 0 ) 21 4 + 6 s + 63 μ 1 μ 4 m 6 ( x x 0 ) 9 2 + 6 s 14 m 7 ( x x 0 ) 21 4 + 7 s .

Appendix B: Computation of Ψ2(ζ, ω) for the series solution of Eq. (5.21)

Ψ 2 ( ζ , ω ) = 1 216 μ 1 μ 2 ( μ 4 ϕ ω + μ 3 ϕ ζ ) 2 × μ 1 2 Ψ 1 ( ζ , ω ) 2 + 144 μ 1 μ 2 μ 4 2 Ψ 1 ω ϕ ω + 24 μ 2 μ 4 ω ϕ ω 2 + 432 μ 1 μ 2 μ 4 2 Ψ 1 ( ζ ω ) ϕ ω ω 52488 μ 2 2 μ 4 4 ϕ ω ω 2 23328 μ 2 2 μ 4 4 ϕ ω ϕ ω ω ω + 144 μ 1 μ 2 μ 3 μ 4 ϕ ω Ψ 1 ζ + 144 μ 1 μ 2 μ 3 μ 4 Ψ 1 ω ϕ ζ + 96 μ 2 μ 4 ζ ϕ ω ϕ ζ + 96 μ 2 μ 3 ω ϕ ω ϕ ζ 23328 μ 2 2 μ 3 μ 4 3 ϕ ω ω ω ϕ ζ + 144 μ 1 μ 2 μ 3 2 Ψ 1 ζ ϕ ζ + 48 μ 2 μ 3 ζ ϕ ζ 2 + 864 μ 1 μ 2 μ 3 μ 4 Ψ 1 ( ζ ω ) ϕ ζ ω 209952 μ 2 2 μ 3 μ 4 3 ϕ ω ω ϕ ζ ω 209952 μ 2 2 μ 3 2 μ 4 2 ϕ ζ ω 2 69984 μ 2 2 μ 3 μ 4 3 ϕ ω ϕ ζ ω ω 69984 μ 2 2 μ 3 2 μ 4 2 ϕ ζ ϕ ζ ω ω + 432 μ 1 μ 2 μ 3 2 Ψ 1 ( ζ ω ) ϕ ζ ζ 104976 μ 2 2 μ 3 2 μ 4 2 ϕ ω ω ϕ ζ ζ 209952 μ 2 2 μ 3 3 μ 4 ϕ ζ ω ϕ ζ ζ 52488 μ 2 2 μ 3 4 ϕ ζ ζ 2 69984 μ 2 2 μ 3 2 μ 4 2 ϕ ζ ϕ ζ ζ ω 69984 μ 2 2 μ 3 3 μ 4 ϕ ζ ϕ ζ ζ ω 23328 μ 2 2 μ 3 3 μ 4 ϕ ω ϕ ζ ζ ζ 23328 μ 2 2 μ 3 4 ϕ ζ ϕ ζ ζ ζ .

Appendix C: Computation of coefficients of the Right Painlevé series solution for Eq. (1.1)

U 3 ( t , x , y , z ) = 1 24 μ 1 μ 2 τ x 4 × 2 μ 1 μ 4 U 1 ( t , x , y , z ) τ z 2 + 2 μ 1 μ 3 U 1 ( t , x , y , z ) τ y 2 4 μ 1 2 U 1 ( t , x , y , z ) U 1 x τ x + 2 μ 1 2 U 1 ( t , x , y , z ) U 2 ( t , x , y , z ) τ x 2 + 24 μ 2 μ 4 τ z z τ x 2 + 24 μ 2 μ 3 τ y y τ x 2 + 48 μ 1 μ 2 U 2 x τ x 3 + 96 μ 2 μ 4 τ z τ x τ x z + 96 μ 2 μ 3 τ y τ x τ x y μ 1 2 U 1 ( t , x , y , z ) 2 τ x x 24 μ 1 μ 2 U 1 x τ x τ x x + 120 μ 1 μ 2 U 2 ( t , x , y , z ) τ x 2 τ x x 18 μ 1 μ 2 U 1 ( t , x , y , z ) τ x x 2 + 288 μ 2 2 τ x x 3 16 μ 1 μ 2 U 1 ( t , x , y , z ) τ x τ x x x + 1056 μ 2 2 τ x τ x x τ x x x + 216 μ 2 2 τ x 2 τ x x x x + 2 μ 1 U 1 ( t , x , y , z ) τ x τ t + 48 μ 2 τ x τ x x τ t + 72 μ 2 τ x 2 τ t x

U 5 ( t , x , y , z ) = 1 2 τ x 2 ( μ 1 μ 2 U 1 + τ x x ) 2 μ 4 U 3 z τ z 2 μ 4 U 4 ( t , x , y , z ) τ z 2 μ 4 U 2 z z μ 4 U 3 ( t , x , y , z ) τ z z 2 μ 3 U 3 y τ y 2 μ 3 U 4 ( t , x , y , z ) τ y 2 μ 3 U 2 y y μ 3 U 3 ( t , x , y , z ) τ y y μ 1 U 2 x 2 2 μ 1 U 1 x U 3 x 2 μ 1 U 4 ( t , x , y , z ) U 1 x τ x 2 μ 1 U 3 ( t , x , y , z ) U 2 x τ x 2 μ 1 U 2 ( t , x , y , z ) U 3 x τ x 2 μ 1 U 1 ( t , x , y , z ) U 4 x τ x μ 1 U 3 ( t , x , y , z ) 2 τ x 2 2 μ 1 U 2 ( t , x , y , z ) U 4 ( t , x , y , z ) τ x 2 μ 1 U 3 ( t , x , y , z ) U 1 x x μ 1 U 2 ( t , x , y , z ) U 2 x x μ 1 U 1 ( t , x , y , z ) U 3 x x μ 1 U 2 ( t , x , y , z ) U 3 ( t , x , y , z ) τ x x μ 1 U 1 ( t , x , y , z ) U 4 ( t , x , y , z ) τ x x + 24 μ 2 U 4 x τ x τ x x 6 μ 2 U 3 x x τ x x + 18 μ 2 U 4 ( t , x , y , z ) τ x x 2 4 μ 2 τ x U 3 x x x 4 μ 2 U 3 x τ x x x + 16 μ 2 U 4 ( t , x , y , z ) τ x τ x x x μ 2 U 2 x x x x μ 2 U 3 ( t , x , y , z ) τ x x x x τ x U 3 t U 3 x τ t 2 U 4 ( t , x , y , z ) τ x τ t U 2 t x U 3 ( t , x , y , z ) τ t x

U 7 ( t , x , y , z ) = 1 48 μ 2 τ x 4 4 μ 4 U 4 z τ z 6 μ 4 U 5 ( t , x , y , z ) τ z 2 μ 4 U 3 z z 2 μ 4 U 4 ( t , x , y , z ) τ z z 4 μ 3 U 4 y τ y 6 μ 3 U 5 ( t , x , y , z ) τ y 2 μ 3 U 3 y y 2 μ 3 U 4 ( t , x , y , z ) τ y y 2 μ 1 U 2 x U 3 x 2 μ 1 U 1 x U 4 x 4 μ 1 U 5 ( t , x , y , z ) U 1 x τ x 4 μ 1 U 4 ( t , x , y , z ) U 2 x τ x 4 μ 1 U 3 ( t , x , y , z ) U 3 x τ x 4 μ 1 U 2 ( t , x , y , z ) U 4 x τ x 4 μ 1 U 1 ( t , x , y , z ) U 5 x τ x 6 μ 1 U 3 ( t , x , y , z ) U 4 ( t , x , y , z ) τ x 2 6 μ 1 U 2 ( t , x , y , z ) U 5 ( t , x , y , z ) τ x 2 6 μ 1 U 1 ( t , x , y , z ) U 6 ( t , x , y , z ) τ x 2 48 μ 2 U 6 x τ x 3 μ 1 U 4 ( t , x , y , z ) U 1 x x μ 1 U 3 ( t , x , y , z ) U 2 x x μ 1 U 2 ( t , x , y , z ) U 3 x x μ 1 U 1 ( t , x , y , z ) U 4 x x 24 μ 2 τ x 2 U 5 x x μ 1 U 3 ( t , x , y , z ) 2 τ x x 2 μ 1 U 2 ( t , x , y , z ) U 4 ( t , x , y , z ) τ x x 2 μ 1 U 1 ( t , x , y , z ) U 5 ( t , x , y , z ) τ x x 24 μ 2 U 5 x τ x τ x x 24 μ 2 U 6 ( t , x , y , z ) τ x 2 τ x x 12 μ 2 U 4 x x τ x x + 6 μ 2 U 5 ( t , x , y , z ) τ x x 2 8 μ 2 τ x U 4 x x x 8 μ 2 U 4 x τ x x x μ 2 U 3 x x x x 2 μ 2 U 4 ( t , x , y , z ) τ x x x x 2 τ x U 4 t 2 U 4 x τ t 6 U 5 ( t , x , y , z ) τ x τ t U 3 t x 2 U 4 ( t , x , y , z ) τ t x

U 8 ( t , x , y , z ) = 1 216 μ 2 τ x 4 × 6 μ 4 U 5 z τ z 12 μ 4 U 6 ( t , x , y , z ) τ z 2 μ 4 U 4 z z 3 μ 4 U 5 ( t , x , y , z ) τ z z 6 μ 3 U 5 y τ y 12 μ 3 U 6 ( t , x , y , z ) τ y 2 μ 3 U 4 y y 3 μ 3 U 5 ( t , x , y , z ) τ y y μ 1 U 3 x 2 2 μ 1 U 2 x U 4 x 2 μ 1 U 1 x U 5 x 6 μ 1 U 6 ( t , x , y , z ) U 1 x τ x 6 μ 1 U 5 ( t , x , y , z ) U 2 x τ x 6 μ 1 U 4 ( t , x , y , z ) U 3 x τ x 6 μ 1 U 3 ( t , x , y , z ) U 4 x τ x 6 μ 1 U 2 ( t , x , y , z ) U 5 x τ x 6 μ 1 U 1 ( t , x , y , z ) U 6 x τ x 6 μ 1 U 4 ( t , x , y , z ) 2 τ x 2 12 μ 1 U 3 ( t , x , y , z ) U 5 ( t , x , y , z ) τ x 2 12 μ 1 U 2 ( t , x , y , z ) U 6 ( t , x , y , z ) τ x 2 12 μ 1 U 1 ( t , x , y , z ) U 7 ( t , x , y , z ) τ x 2 168 μ 2 U 7 x τ x 3 μ 1 U 5 ( t , x , y , z ) U 1 x x μ 1 U 4 ( t , x , y , z ) U 2 x x μ 1 U 3 ( t , x , y , z ) U 3 x x μ 1 U 2 ( t , x , y , z ) U 4 x x μ 1 U 1 ( t , x , y , z ) U 5 x x 60 μ 2 τ x 2 U 6 x x 3 μ 1 U 3 ( t , x , y , z ) U 4 ( t , x , y , z ) τ x x 3 μ 1 U 2 ( t , x , y , z ) U 5 ( t , x , y , z ) τ x x 3 μ 1 U 1 ( t , x , y , z ) U 6 ( t , x , y , z ) τ x x 96 μ 2 U 6 x τ x τ x x 180 μ 2 U 7 ( t , x , y , z ) τ x 2 τ x x 18 μ 2 U 5 x x τ x x 12 μ 2 U 6 ( t , x , y , z ) τ x x 2 12 μ 2 τ x U 5 x x x 12 μ 2 U 5 x τ x x x 24 μ 2 U 6 ( t , x , y , z ) τ x τ x x x μ 2 U 4 x x x x 3 μ 2 U 5 ( t , x , y , z ) τ x x x x 3 τ x U 5 t 3 U 5 x τ t 12 U 6 ( t , x , y , z ) τ x τ t U 4 t x 3 U 5 ( t , x , y , z ) τ t x

Appendix D: Computation of leading-order exponent and coefficient for Eq. (11.1)

0 = 5 p U 0 σ τ ( 2 + p ) τ y 2 5 p 2 U 0 σ τ ( 2 + p ) τ y 2 5 p U 0 σ τ ( 1 + p ) τ y y 30 p 2 U 0 2 σ τ ( 3 + 2 p ) τ y τ x 2 + 30 p 3 U 0 2 σ τ ( 3 + 2 p ) τ y τ x 2 30 p U 0 σ τ ( 4 + p ) τ y τ x 3 + 55 p 2 U 0 σ τ ( 4 + p ) τ y τ x 3 30 p 3 U 0 σ τ ( 4 + p ) τ y τ x 3 + 5 p 4 U 0 σ τ ( 4 + p ) τ y τ x 3 45 p 3 U 0 3 τ ( 4 + 3 p ) τ x 4 + 45 p 4 U 0 3 τ ( 4 + 3 p ) τ x 4 165 p 2 U 0 2 τ ( 5 + 2 p ) τ x 5 + 705 2 p 3 U 0 2 τ ( 5 + 2 p ) τ x 5 240 p 4 U 0 2 τ ( 5 + 2 p ) τ x 5 + 105 2 p 5 U 0 2 τ ( 5 + 2 p ) τ x 5 120 p U 0 τ ( 6 + p ) τ x 6 + 274 p 2 U 0 τ ( 6 + p ) τ x 6 225 p 3 U 0 τ ( 6 + p ) τ x 6 + 85 p 4 U 0 τ ( 6 + p ) τ x 6 15 p 5 U 0 τ ( 6 + p ) τ x 6 + p 6 U 0 τ ( 6 + p ) τ x 6 + 15 p 2 U 0 2 σ τ ( 2 + 2 p ) τ x τ x y + 30 p U 0 σ τ ( 3 + p ) τ x 2 τ x y 45 p 2 U 0 σ τ ( 3 + p ) τ x 2 τ x y + 15 p 3 U 0 σ τ ( 3 + p ) τ x 2 τ x y + 15 p 2 U 0 2 σ τ ( 2 + 2 p ) τ y τ x x + 30 p U 0 σ τ ( 3 + p ) τ y τ x τ x x 45 p 2 U 0 σ τ ( 3 + p ) τ y τ x τ x x + 15 p 3 U 0 σ τ ( 3 + p ) τ y τ x τ x x + 45 p 3 U 0 3 τ ( 3 + 3 p ) τ x 2 τ x x + 735 2 p 2 U 0 2 τ ( 4 + 2 p ) τ x 3 τ x x 1215 2 p 3 U 0 2 τ ( 4 + 2 p ) τ x 3 τ x x + 240 p 4 U 0 2 τ ( 4 + 2 p ) τ x 3 τ x x + 360 p U 0 τ ( 5 + p ) τ x 4 τ x x 750 p 2 U 0 τ ( 5 + p ) τ x 4 τ x x + 525 p 3 U 0 τ ( 5 + p ) τ x 4 τ x x 150 p 4 U 0 τ ( 5 + p ) τ x 4 τ x x + 15 p 5 U 0 τ ( 5 + p ) τ x 4 τ x x 15 p U 0 σ τ ( 2 + p ) τ x y τ x x + 15 p 2 U 0 σ τ ( 2 + p ) τ x y τ x x 315 2 p 2 U 0 2 τ ( 3 + 2 p ) τ x τ x x 2 + 315 2 p 3 U 0 2 τ ( 3 + 2 p ) τ x τ x x 2 270 p U 0 τ ( 4 + p ) τ x 2 τ x x 2 + 495 p 2 U 0 τ ( 4 + p ) τ x 2 τ x x 2 270 p 3 U 0 τ ( 4 + p ) τ x 2 τ x x 2 + 45 p 4 U 0 τ ( 4 + p ) τ x 2 τ x x 2 + 30 p U 0 τ ( 3 + p ) τ x x 3 45 p 2 U 0 τ ( 3 + p ) τ x x 3 + 15 p 3 U 0 τ ( 3 + p ) τ x x 3 15 p U 0 σ τ ( 2 + p ) τ x τ x x y + 15 p 2 U 0 σ τ ( 2 + p ) τ x τ x x y 5 p U 0 σ τ ( 2 + p ) τ y τ x x x + 5 p 2 U 0 σ τ ( 2 + p ) τ y τ x x x 195 2 p 2 U 0 2 τ ( 3 + 2 p ) τ x 2 τ x x x + 195 2 p 3 U 0 2 τ ( 3 + 2 p ) τ x 2 τ x x x 120 p U 0 τ ( 4 + p ) τ x 3 τ x x x + 220 p 2 U 0 τ ( 4 + p ) τ x 3 τ x x x 120 p 3 U 0 τ ( 4 + p ) τ x 3 τ x x x + 20 p 4 U 0 τ ( 4 + p ) τ x 3 τ x x x + 75 2 p 2 U 0 2 τ ( 2 + 2 p ) τ x x τ x x x + 120 p U 0 τ ( 3 + p ) τ x τ x x τ x x x 180 p 2 U 0 τ ( 3 + p ) τ x τ x x τ x x x + 60 p 3 U 0 τ ( 3 + p ) τ x τ x x τ x x x 10 p U 0 τ ( 2 + p ) τ x x x 2 + 10 p 2 U 0 τ ( 2 + p ) τ x x x 2 + 5 p U 0 σ τ ( 1 + p ) τ x x x y + 15 p 2 U 0 2 τ ( 2 + 2 p ) τ x τ x x x x + 30 p U 0 τ ( 3 + p ) τ x 2 τ x x x x 45 p 2 U 0 τ ( 3 + p ) τ x 2 τ x x x x + 15 p 3 U 0 τ ( 3 + p ) τ x 2 τ x x x x 15 p U 0 τ ( 2 + p ) τ x x τ x x x x + 15 p 2 U 0 τ ( 2 + p ) τ x x τ x x x x 6 p U 0 τ ( 2 + p ) τ x τ x x x x x + 6 p 2 U 0 τ ( 2 + p ) τ x τ x x x x x + p U 0 τ ( 1 + p ) τ x x x x x x 9 p U 0 τ ( 2 + p ) τ x τ t + 9 p 2 U 0 τ ( 2 + p ) τ x τ t + 9 p U 0 τ ( 1 + p ) τ t x .

References

[1] D. Lu, K. U. Tariq, M. S. Osman, D. Baleanu, M. Younis, and M. M. A. Khater, “New analytical wave structures for the (3+ 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications,” Results Phys., vol. 14, p. 102491, 2019. https://doi.org/10.1016/j.rinp.2019.102491.Search in Google Scholar

[2] W. X. Ma, “Comment on the 3+1 dimensional Kadomtsev-Petviashvili equations,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, no. 7, pp. 2663–2666, 2011. https://doi.org/10.1016/j.cnsns.2010.10.003.Search in Google Scholar

[3] X. B. Hu, D. L. Wang, and X. M. Qian, “Soliton solutions and symmetries of the 2 + 1 dimensional Kaup-Kupershmidt equation,” Phys. Lett. A, vol. 262, no. 6, pp. 409–415, 1999. https://doi.org/10.1016/s0375-9601(99)00683-0.Search in Google Scholar

[4] M. Senthilvelan, “On the extended applications of homogenous balance method,” Appl. Math. Comput., vol. 123, no. 3, pp. 381–388, 2001. https://doi.org/10.1016/s0096-3003(00)00076-x.Search in Google Scholar

[5] J. Weiss, “Modified equations, rational solutions, and the Painlevé property for the Kadomtsev-Petviashvili and Hirota-Satsuma equations,” J. Math. Phys., vol. 26, pp. 2174–2180, 1985. https://doi.org/10.1063/1.526841.Search in Google Scholar

[6] M. J. Ablowitz and H. Segur, “On the evolution of packets of water waves,” J. Fluid Mech., vol. 92, no. 4, pp. 691–715, 1979. https://doi.org/10.1017/s0022112079000835.Search in Google Scholar

[7] E. Infeld, “Three dimensional stability of Korteweg-de Vries waves and solitons. II,” Acta Phys. Pol., A, vol. 56, pp. 328–332, 1979.Search in Google Scholar

[8] V. G. Makhankov, “Dynamics of classical solitons (in non-integrable systems),” Phys. Rep., vol. 35, no. 1, pp. 1–128, 1978. https://doi.org/10.1016/0370-1573(78)90074-1.Search in Google Scholar

[9] P. Rosenau, “Dynamics of dense lattices,” Phys. Rev. B, vol. 36, no. 11, p. 5868, 1987. https://doi.org/10.1103/physrevb.36.5868.Search in Google Scholar PubMed

[10] B. Abraham-Shrauner, K. S. Govinder, and D. J. Arrigo, “Type-II hidden symmetries of the linear 2D and 3D wave equations,” J. Phys. Math. Gen., vol. 39, no. 20, p. 5739, 2006. https://doi.org/10.1088/0305-4470/39/20/008.Search in Google Scholar

[11] A. P. Fordy and J. Gibbons, “Some remarkable nonlinear transformations,” Phys. Lett. A, vol. 75, no. 5, p. 325, 1980. https://doi.org/10.1016/0375-9601(80)90829-4.Search in Google Scholar

[12] R. Hirota and A. Ramani, “The Miura transformations of Kaup’s equation and of Mikhailov’s equation,” Phys. Lett. A, vol. 76, no. 2, pp. 95–96, 1980. https://doi.org/10.1016/0375-9601(80)90578-2.Search in Google Scholar

[13] M. Jimbo and T. Miwa, “Solitons and infinite dimensional Lie algebras,” Publ. Res. Inst. Math. Sci., vol. 19, no. 3, pp. 943–1001, 1983. https://doi.org/10.2977/prims/1195182017.Search in Google Scholar

[14] D. J. Kaup, “On the inverse scattering problem for cubic eigenvalue problems of the class Ψxxx + 6QΨx + 6RΨ = λΨ,” Stud. Appl. Math., vol. 62, pp. 189–216, 1980. https://doi.org/10.1002/sapm1980623189.Search in Google Scholar

[15] B. A. Kupershmidt, “A super Korteweg-de Vries equation: an integrable system,” Phys. Lett. A, vol. 102, nos 5–6, pp. 213–215, 1984. https://doi.org/10.1016/0375-9601(84)90693-5.Search in Google Scholar

[16] C. Rogers and S. Carillo, “On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies,” Phys. Scr., vol. 36, no. 6, p. 865, 1987. https://doi.org/10.1088/0031-8949/36/6/001.Search in Google Scholar

[17] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, New York, Springer-Verlag, 1989.10.1007/978-1-4757-4307-4Search in Google Scholar

[18] Y. N. Grigoriev, V. F. Kovalev, S. V. Meleshko, and N. H. Ibragimov, Symmetries of Integro-Differential Equations: With Applications in Mechanics and Plasma Physics, Dordrecht, Springer, 2010.10.1007/978-90-481-3797-8Search in Google Scholar

[19] E. L. Ince, Ordinary Differential Equations, London, Longmans Green & Co., 1927.Search in Google Scholar

[20] P. J. Olver, Applications of Lie Groups to Differential Equations, New York, Springer-Verlag, 1993.10.1007/978-1-4612-4350-2Search in Google Scholar

[21] A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Equations of Mathematical Physics. Exact Solutions (in Russian), Moscow, Fizmatlit, 2002.Search in Google Scholar

[22] K. Sofia, “Sur le problème de la rotation d’un corps solide autour d’un point fixe,” Acta Math., vol. 12, pp. 177–232, 1889.10.1007/BF02592182Search in Google Scholar

[23] M. J. Ablowitz, A. Ramani, and H. Segur, “Nonlinear evolution equations and ordinary differential equations of Painlevé type,” Lett. al Nuovo Cimento, vol. 23, pp. 333–337, 1978. https://doi.org/10.1007/bf02824479.Search in Google Scholar

[24] M. J. Ablowitz, A. Ramani, and H. Segur, “A connection between nonlinear evolution equations and ordinary differential equations of P type I,” J. Math. Phys., vol. 21, pp. 715–721, 1980. https://doi.org/10.1063/1.524491.Search in Google Scholar

[25] M. J. Ablowitz, A. Ramani, and H. Segur, “A connection between nonlinear evolution equations and ordinary differential equations of P type II,” J. Math. Phys., vol. 21, pp. 1006–1015, 1980. https://doi.org/10.1063/1.524548.Search in Google Scholar

[26] J. Weiss, M. Tabor, and C. George, “The Painlevé property for partial differential equations,” J. Math. Phys., vol. 24, pp. 522–526, 1983. https://doi.org/10.1063/1.525721.Search in Google Scholar

[27] R. L. Lemmer and P. G. L. Leach, “The Painlevé test, hidden symmetries and the equation y′′ + yy′3 = 0,” J. Phys. Math. Gen., vol. 26, pp. 5017–5024, 1993. https://doi.org/10.1088/0305-4470/26/19/030.Search in Google Scholar

[28] K. Andriopoulos and P. G. L. Leach, “An interpretation of the presence of both positive and negative nongeneric resonances in the singularity analysis,” Phys. Lett. A, vol. 359, pp. 199–203, 2006. https://doi.org/10.1016/j.physleta.2006.06.026.Search in Google Scholar

[29] K. Andriopoulos and P. G. L. Leach, “Symmetry and singularity properties of second-order ordinary differential equation of Lie’s Type III,” J. Math. Anal. Appl., vol. 328, pp. 860–875, 2007. https://doi.org/10.1016/j.jmaa.2006.06.006.Search in Google Scholar

[30] K. Andriopoulos and P. G. L. Leach, “The Mixmaster Universe: the final reckoning?” J. Phys. Math. Theor., vol. 41, p. 155201, 2008. https://doi.org/10.1088/1751-8113/41/15/155201.Search in Google Scholar

[31] C. Spiros and P. G. L. Leach, “Painlevé analysis of the Mixmaster universe,” J. Phys. Math. Gen., vol. 27, no. 5, pp. 1625–1631, 1994.10.1088/0305-4470/27/5/026Search in Google Scholar

[32] A. K. Halder, A. Paliathanasis, and P. G. L. Leach, “Singularity analysis of a variant of the Painlevé–Ince equation,” Appl. Math. Lett., vol. 98, pp. 70–73, 2019. https://doi.org/10.1016/j.aml.2019.05.042.Search in Google Scholar

[33] R. Conte, “Universal invariance properties of Painlevé analysis and Bäcklund transformation in nonlinear partial differential equations,” Phys. Lett. A, vol. 134, no. 2, pp. 100–104, 1988. https://doi.org/10.1016/0375-9601(88)90942-5.Search in Google Scholar

[34] R. Conte, “Invariant Painlevé analysis of partial differential equations,” Phys. Lett. A, vol. 140, nos 7-8, pp. 383–390, 1989. https://doi.org/10.1201/9781482276923-31.Search in Google Scholar

[35] J. Weiss, “The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative,” J. Math. Phys., vol. 24, pp. 1405–1413, 1983. https://doi.org/10.1063/1.525875.Search in Google Scholar

[36] J. Weiss, “On classes of integrable systems and the Painlevé property,” J. Math. Phys., vol. 25, pp. 13–24, 1984. https://doi.org/10.1063/1.526009.Search in Google Scholar

[37] J. Weiss, “Bäcklund transformation and linearizations of the Hénon-Heilles system,” Phys. Lett. A, vol. 102, no. 8, pp. 329–331, 1984. https://doi.org/10.1016/0375-9601(84)90289-5.Search in Google Scholar

[38] J. Weiss, “The sine-Gordon equations: complete and partial integrability,” J. Math. Phys., vol. 25, pp. 2226–2235, 1984. https://doi.org/10.1063/1.526415.Search in Google Scholar

[39] J. Weiss, “The Painlevé property and Bäcklund transformations for the sequence of Boussinesq equations,” J. Math. Phys., vol. 26, pp. 258–269, 1985. https://doi.org/10.1063/1.526655.Search in Google Scholar

[40] K. Charalambous, A. K. Halder, and P. G. L. Leach, “A note on analysis of the Kaup-Kupershmidt equation,” AIP Conf. Proc., vol. 2153, no. 1, p. 020006, 2019. https://doi.org/10.1063/1.5125071.Search in Google Scholar

[41] K. Andriopoulos, S. Dimas, P. G. L. Leach, and D. Tsoubelis, “On the systematic approach to the classification of differential equations by group theoretical methods,” J. Comput. Appl. Math., vol. 230, no. 1, pp. 224–232, 2009. https://doi.org/10.1016/j.cam.2008.11.002.Search in Google Scholar

[42] K. Andriopoulos and P. G. L. Leach, “The occurrence of a triple-1 resonance in the standard singularity,” Nuovo Cimento Soc. Ital. Fis., B, vol. 124, no. 1, pp. 1–11, 2009.Search in Google Scholar

[43] K. Andriopoulos and P. G. L. Leach, “Singularity analysis for autonomous and nonautonomous differential equations,” Appl. Anal. Discrete Math., vol. 5, pp. 230–239, 2011. https://doi.org/10.2298/aadm110715016a.Search in Google Scholar

[44] S. Dimas and D. Tsoubelis, “SYM: a new symmetry-finding package for Mathematica,” in Proceedings of the 10th International Conference in Modern Group Analysis, 2004, pp. 64–70.Search in Google Scholar

[45] S. Dimas and D. Tsoubelis, “A new Mathematica-based program for solving overdetermined systems of PDEs,” in 8th International Mathematica Symposium, 2006.Search in Google Scholar

[46] S. Dimas, “Partial differential equations, algebraic computing and nonlinear systems,” Ph.D. thesis, University of Patras, Greece, 2008.Search in Google Scholar

[47] V. V. Morozov, “Classification of six-dimensional nilpotent Lie algebras,” Izvestia Vysshikh Uchebn Zavendeniĭ Matematika, vol. 5, pp. 161–171, 1958.Search in Google Scholar

[48] G. M. Mubarakzyanov, “On solvable Lie algebras,” Izvestia Vysshikh Uchebn Zavendeniĭ Matematika, vol. 32, pp. 114–123, 1963.Search in Google Scholar

[49] G. M. Mubarakzyanov, “Classification of real structures of five-dimensional Lie algebras,” Izvestia Vysshikh Uchebn Zavendeniĭ Matematika, vol. 34, pp. 99–106, 1963.Search in Google Scholar

[50] G. M. Mubarakzyanov, “Classification of solvable six-dimensional Lie algebras with one nilpotent base element,” Izvestia Vysshikh Uchebn Zavendeniĭ Matematika, vol. 35, pp. 104–116, 1963.Search in Google Scholar

Received: 2020-04-09
Revised: 2021-07-06
Accepted: 2021-07-20
Published Online: 2021-08-09
Published in Print: 2022-12-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Articles
  3. Coordinated target tracking in sensor networks by maximizing mutual information
  4. Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties
  5. Computational study of intravenous magnetic drug targeting using implanted magnetizable stent
  6. Extended logistic map for encryption of digital images
  7. Valuation of the American put option as a free boundary problem through a high-order difference scheme
  8. Power minimization of gas transmission network in fully transient state using metaheuristic methods
  9. A priori error estimates for finite element approximations to transient convection-diffusion-reaction equations in fluidized beds
  10. Higher order rogue waves for the(3 + 1)-dimensional Jimbo–Miwa equation
  11. Dynamic characteristics of supersonic turbulent free jets from four types of circular nozzles
  12. New insights into singularity analysis
  13. Chaos and bifurcations in a discretized fractional model of quasi-periodic plasma perturbations
  14. Wavelet collocation methods for solving neutral delay differential equations
  15. Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method
  16. Solving nonlinear third-order boundary value problems based-on boundary shape functions
  17. Positive radial solutions for Dirichlet problems involving the mean curvature operator in Minkowski space
  18. Effect of outlet impeller diameter on performance prediction of centrifugal pump under single-phase and cavitation flow conditions
  19. A fractional-order ship power system: chaos and its dynamical properties
  20. Graphical structure of extended b-metric spaces: an application to the transverse oscillations of a homogeneous bar
  21. Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations
  22. Modelling and numerical synchronization of chaotic system with fractional-order operator
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0076/html
Scroll to top button