Home A fractional-order ship power system: chaos and its dynamical properties
Article
Licensed
Unlicensed Requires Authentication

A fractional-order ship power system: chaos and its dynamical properties

  • Karthikeyan Rajagopal ORCID logo , Prakash Duraisamy , Goitom Tadesse , Christos Volos , Fahimeh Nazarimehr ORCID logo EMAIL logo and Iqtadar Hussain ORCID logo
Published/Copyright: August 9, 2021

Abstract

In this research, the ship power system is studied with a fractional-order approach. A 2-D model of a two-generator parallel-connected is considered. A chaotic attractor is observed for particular parameter values. The fractional-order form is calculated with the Adam–Bashforth–Moulton method. The chaotic response is identified even for the order 0.99. Phase portrait is generated using the Caputo derivative approach. Wolf’s algorithm is used to calculate Lyapunov exponents. For the considered values of parameters, one positive Lyapunov exponent confirms the existence of chaos. Bifurcation diagrams are presented to analyze the various dynamical behaviors and bifurcation points. Interestingly, the considered system is multistable. Also, antimonotonicity, period-doubling, and period halving are observed in the bifurcation diagram. As the last step, a fractional-order controller is designed to remove chaotic dynamics. Time plots are simulated to show the effectiveness of the controller.


Corresponding author: Fahimeh Nazarimehr, Department of Biomedical Engineering, Amirkabir University of Technology, 350 Hafez Ave., Tehran 1591634311, Iran, E-mail:

Funding source: Chennai Institute of Technology

Award Identifier / Grant number: CIT/CNS/2020/RD/063

Acknowledgment

This work is partially funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India vide funding number CIT/CNS/2020/RD/063

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India vide funding number CIT/CNS/2020/RD/063.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. C. Sprott, Chaos and Time-Series Analysis, Oxford, Oxford University Press, 2003.10.1093/oso/9780198508397.001.0001Search in Google Scholar

[2] J.-S. Fang, J. S.-H. Tsai, J.-J. Yan, and S.-M. Guo, “Adaptive chattering-free sliding mode control of chaotic systems with unknown input nonlinearity via smooth hyperbolic tangent function,” Math. Probl. Eng., vol. 2019, p. 4509674, 2019. https://doi.org/10.1155/2019/4509674.Search in Google Scholar

[3] A. T. Azar and F. E. Serrano, “Stabilization of port Hamiltonian chaotic systems with hidden attractors by adaptive terminal sliding mode control,” Entropy, vol. 22, p. 122, 2020. https://doi.org/10.3390/e22010122.Search in Google Scholar PubMed PubMed Central

[4] S. Laghrouche, F. Plestan, and A. Glumineau, “Higher order sliding mode control based on integral sliding mode,” Automatica, vol. 43, pp. 531–537, 2007. https://doi.org/10.1016/j.automatica.2006.09.017.Search in Google Scholar

[5] R. Zhang and S. Yang, “Robust synchronization of two different fractional-order chaotic systems with unknown parameters using adaptive sliding mode approach,” Nonlinear Dynam., vol. 71, pp. 269–278, 2013. https://doi.org/10.1007/s11071-012-0659-9.Search in Google Scholar

[6] N. Kuznetsov, T. Mokaev, O. Kuznetsova, and E. Kudryashova, “The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension,” Nonlinear Dynam., vol. 102, pp. 713–732, 2020. https://doi.org/10.1007/s11071-020-05856-4.Search in Google Scholar

[7] N. Wang, G. Zhang, N. Kuznetsov, and H. Bao, “Hidden attractors and multistability in a modified Chua’s circuit,” Commun. Nonlinear Sci. Numer. Simulat., vol. 92, p. 105494, 2021. https://doi.org/10.1016/j.cnsns.2020.105494.Search in Google Scholar

[8] N. Kuznetsov, “Theory of hidden oscillations and stability of control systems,” J. Comput. Syst. Sci. Int., vol. 59, pp. 647–668, 2020. https://doi.org/10.1134/s1064230720050093.Search in Google Scholar

[9] L. A. Said, O. Elwy, A. H. Madian, A. G. Radwan, and A. M. Soliman, “Stability analysis of fractional-order Colpitts oscillators,” Analog Integr. Circuits Signal Process., vol. 101, pp. 267–279, 2019. https://doi.org/10.1007/s10470-019-01501-2.Search in Google Scholar

[10] S. Kapoulea, G. Tsirimokou, C. Psychalinos, and A. S. Elwakil, “Generalized fully adjustable structure for emulating fractional-order capacitors and inductors of orders less than two,” Circ. Syst. Signal Process., vol. 39, pp. 1797–1814, 2020. https://doi.org/10.1007/s00034-019-01252-5.Search in Google Scholar

[11] S. Kapoulea, C. Psychalinos, and A. S. Elwakil, “Realizations of simple fractional-order capacitor emulators with electronically-tunable capacitance,” Integration, vol. 69, pp. 225–233, 2019. https://doi.org/10.1016/j.vlsi.2019.04.004.Search in Google Scholar

[12] S. He, K. Sun, and X. Wu, “Fractional symbolic network entropy analysis for the fractional-order chaotic systems,” Phys. Scr., vol. 95, p. 035220, 2020. https://doi.org/10.1088/1402-4896/ab46c9.Search in Google Scholar

[13] L. Wang, K. Sun, Y. Peng, and S. He, “Chaos and complexity in a fractional-order higher-dimensional multicavity chaotic map,” Chaos, Solit. Fractals, vol. 131, p. 109488, 2020. https://doi.org/10.1016/j.chaos.2019.109488.Search in Google Scholar

[14] M. F. Tolba, H. Saleh, B. Mohammad, M. Al-Qutayri, A. S. Elwakil, and A. G. Radwan, “Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system,” Nonlinear Dynam., vol. 99, pp. 3143–3154, 2020. https://doi.org/10.1007/s11071-019-05449-w.Search in Google Scholar

[15] A. J. Abd El-Maksoud, A. A. Abd El-Kader, B. G. Hassan, et al.., “FPGA implementation of integer/fractional chaotic systems, ” in Multimedia Security Using Chaotic Maps: Principles and Methodologies, vol. 884, Cham, Springer, 2020.10.1007/978-3-030-38700-6_9Search in Google Scholar

[16] S. Kapoulea, V. Bizonis, P. Bertsias, C. Psychalinos, A. Elwakil, and I. Petráš, “Reduced active components count electronically adjustable fractional-order controllers: two design examples,” Electronics, vol. 9, p. 63, 2020. https://doi.org/10.3390/electronics9010063.Search in Google Scholar

[17] O. I. Ahmed, H. M. Yassin, L. A. Said, C. Psychalinos, and A. G. Radwan, “Implementation and analysis of tunable fractional-order band-pass filter of order 2α,” Int. J. Electron. Commun., vol. 124, p. 153343, 2020. https://doi.org/10.1016/j.aeue.2020.153343.Search in Google Scholar

[18] S. Kapoulea, C. Psychalinos, and A. S. Elwakil, “Power law filters: a new class of fractional-order filters without a fractional-order Laplacian operator,” Int. J. Electron. Commun., vol. 129, p. 153537, 2021. https://doi.org/10.1016/j.aeue.2020.153537.Search in Google Scholar

[19] S. He, S. Banerjee, and K. Sun, “Complex dynamics and multiple coexisting attractors in a fractional-order microscopic chemical system,” Eur. Phys. J. Spec. Top., vol. 228, pp. 195–207, 2019. https://doi.org/10.1140/epjst/e2019-800166-y.Search in Google Scholar

[20] L. Zhou and F. Chen, “Subharmonic bifurcations and chaotic dynamics for a class of ship power system,” J. Comput. Nonlinear Dynam., vol. 13, p. 031011, 2018. https://doi.org/10.1115/1.4039060.Search in Google Scholar

[21] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, New York, NY, Elsevier, 2006.Search in Google Scholar

[22] V. Vaziri, M. Kapitaniak, and M. Wiercigroch, “Suppression of drill-string stick–slip vibration by sliding mode control: numerical and experimental studies,” Eur. J. Appl. Math., vol. 29, pp. 805–825, 2018. https://doi.org/10.1017/s0956792518000232.Search in Google Scholar

[23] V. Vaziri, I. O. Oladunjoye, M. Kapitaniak, S. S. Aphale, and M. Wiercigroch, “Parametric analysis of a sliding-mode controller to suppress drill-string stick-slip vibration,” Meccanica, vol. 55, pp. 2475–2492, 2020. https://doi.org/10.1007/s11012-020-01264-5.Search in Google Scholar

Received: 2020-06-02
Revised: 2021-04-10
Accepted: 2021-07-20
Published Online: 2021-08-09
Published in Print: 2022-12-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Articles
  3. Coordinated target tracking in sensor networks by maximizing mutual information
  4. Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties
  5. Computational study of intravenous magnetic drug targeting using implanted magnetizable stent
  6. Extended logistic map for encryption of digital images
  7. Valuation of the American put option as a free boundary problem through a high-order difference scheme
  8. Power minimization of gas transmission network in fully transient state using metaheuristic methods
  9. A priori error estimates for finite element approximations to transient convection-diffusion-reaction equations in fluidized beds
  10. Higher order rogue waves for the(3 + 1)-dimensional Jimbo–Miwa equation
  11. Dynamic characteristics of supersonic turbulent free jets from four types of circular nozzles
  12. New insights into singularity analysis
  13. Chaos and bifurcations in a discretized fractional model of quasi-periodic plasma perturbations
  14. Wavelet collocation methods for solving neutral delay differential equations
  15. Numerical solution of highly non-linear fractional order reaction advection diffusion equation using the cubic B-spline collocation method
  16. Solving nonlinear third-order boundary value problems based-on boundary shape functions
  17. Positive radial solutions for Dirichlet problems involving the mean curvature operator in Minkowski space
  18. Effect of outlet impeller diameter on performance prediction of centrifugal pump under single-phase and cavitation flow conditions
  19. A fractional-order ship power system: chaos and its dynamical properties
  20. Graphical structure of extended b-metric spaces: an application to the transverse oscillations of a homogeneous bar
  21. Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations
  22. Modelling and numerical synchronization of chaotic system with fractional-order operator
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0127/html
Scroll to top button