Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
Abstract
Bright blue cobalt aluminate powders were prepared using ultrasonic-assisted co-precipitation and hydrothermal methods. In addition, triethylamine (TEA), butyrolactam (BL), and n-cetyl-n,n,n-trimethylammonium bromide (CTAB) surfactants were used during synthesis to enhance the sample characteristics. The prepared compounds were compared based on their photocatalytic characteristics and the degradation of Congo Red (CR). From X-ray diffraction, the synthesised compounds were identified as CoAl2O4 with a spinel structure. Scanning electron microscopy revealed that polygonal particles were obtained in the ultrasonic-assisted co-precipitation method whereas rounded particles were obtained in the ultrasonic-assisted hydrothermal method. The most homogeneous morphology was seen in the co-precipitation sample using TEA, and the smallest particles were observed in the hydrothermal samples using BL. The highest CR removal was achieved in the co-precipitation and hydrothermal samples prepared using TEA, with 46.15 % and 39 % removal, respectively. The determination of the optimal experimental parameters was effective in enhancing the photocatalytic properties of spinel CoAl2O4.
Acknowledgments
The authors are grateful to Zeynep Ozturk, Selin Gurel, Mehmet Onat and Berkay Karaman for their support in the laboratory.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Vijaya, J. J.; Kennedy, L. J.; Sekaran, G.; Nagaraja, K. S. Sol–gel Derived (Sr, Ni) Al2O4 Composites for Benzene and Toluene Sensors. Mater. Lett. 2007, 61, 5213–5216; https://doi.org/10.1016/j.matlet.2007.04.033.Suche in Google Scholar
2. Cavalcante, P. M. T.; Dondi, M.; Guarini, G.; Raimondo, M.; Baldi, G. Colour Performance of Ceramic Nano-Pigments. Dyes Pigm. 2009, 80, 226–232; https://doi.org/10.1016/j.dyepig.2008.07.004.Suche in Google Scholar
3. Mindru, I.; Marinescu, G.; Gingasu, D.; Patron, L.; Ghica, C.; Giurginca, M. Blue CoAl2O4 Spinel via Complexation Method. Mater. Chem. Phys. 2010, 122, 491–497. https://doi.org/10.1016/j.matchemphys.2010.03.032.Suche in Google Scholar
4. Baseri, J.; Naghizadeh, R.; Rezaie, H. R.; Golestanifard, F.; Golmohammad, M. A Comparative Study on Citrate Sol-gel and Combustion Synthesis Methods of CoAl2O4 Spinel. Int. J. Appl. Ceram. 2020, 17, 2709–2715. https://doi.org/10.1111/ijac.13598.Suche in Google Scholar
5. El, J. Y.; Lakhlifi, H.; El Ouatib, R.; Er-Rakho, L.; Guillemet-Fritsch, S.; Durand, B. Structure, Microstructure, Optical and Magnetic Properties of Cobalt Aluminate Nanopowders Obtained by Sol-Gel Process. J. Non-Cryst. Solids 2020, 120115. https://doi.org/10.1016/j.jnoncrysol.2020.120115.Suche in Google Scholar
6. El-Said, B. D. Investigation on Optical, Dielectric, and Magnetic Properties of CoAl2-xFexO4 Nanoparticles. J. Supercond. Nov. Magn. 2020, 33, 1789–1801; https://doi.org/10.1007/s10948-020-05437-x.Suche in Google Scholar
7. Gurugubelli, T. R.; Babu, B.; Yoo, K. Structural, Optical, and Magnetic Properties of Cobalt-Doped ZnAl2O4 Nanosheets Prepared by Hydrothermal Synthesis. Energies 2021, 14, 1–9; https://doi.org/10.3390/en14102869.Suche in Google Scholar
8. Mark, J. A. M.; Venkatachalam, A.; Pramothkumar, A.; Senthilkumar, N.; Jothivenkatachala, K.; prince Jesuraj, J. Investigation on Structural, Optical and Photocatalytic Activity of CoMn2O4 Nanoparticles Prepared via Simple Co-precipitation Method. Phys. B Condens. 2021, 412349. https://doi.org/10.1016/j.physb.2020.412349.Suche in Google Scholar
9. Roniboss, A.; Subramani, A.; Ramamoorthy, R.; Yuvaraj, S.; Sundararajan, M.; Dash, C. S. Investigation of Structural, Optical and Magnetic Behavior of MAl2O4 (M= Zn and Co) Nanoparticles via Microwave Combustion Technique. Mater. Sci. Semicond. Process. 2021, 105507. https://doi.org/10.1016/j.mssp.2020.105507.Suche in Google Scholar
10. Boudiaf, S.; Nasrallah, N.; Mellal, M.; Belabed, C.; Belhamdi, B.; Meziani, D.; Mehdi, B.; Trari, M. Synthesis and Characterization of Semiconductor CoAl2O4 for Optical and Dielectric Studies: Application to Photodegradation of Organic Pollutants under Visible Light. Optik 2020, 165038. https://doi.org/10.1016/j.ijleo.2020.165038.Suche in Google Scholar
11. Tan, L.; Wang, Q.; Cheng, Z.; Hu, Z.; Liu, K.; Wang, Y.; Chang, Q. Research on the Low-Temperature Synthesis of Cobalt Aluminum Spinel Type Blue Pigments. J. Alloys Compd. 2021, 864, 1–14; https://doi.org/10.1016/j.jallcom.2021.158625.Suche in Google Scholar
12. Yoneda, M.; Gotoh, K.; Nakanishi, M.; Fujii, T.; Konishi, Y.; Nomura, T. Solid-state Synthesis and Characterization of Cobalt Blue Core-shell Pigment Particles. J. Am. Ceram. Soc. 2019, 102, 3468–3476; https://doi.org/10.1111/jace.16191.Suche in Google Scholar
13. Sakr, A. Significance of Lanthanum Doping on Physical, Optical, Magnetic, and Dielectric Properties of CoAl2-xLaxO4 Nanoparticles. Egypt. J. Phys. 2020, 48, 53–69.10.21608/ejphysics.2020.27625.1040Suche in Google Scholar
14. Kim, J. H.; Son, B. R.; Yoon, D. H.; Hwang, K. T.; Noh, H. G.; Cho, W. S.; Kim, U. S. Characterization of Blue CoAl2O4 Nano-Pigment Synthesized by Ultrasonic Hydrothermal Method. Ceram. Int. 2012, 38, 5707–5712; https://doi.org/10.1016/j.ceramint.2012.04.015.Suche in Google Scholar
15. Rajabi, M.; Kharaziyan, P.; Montazeri-Pour, M. Microwave-assisted Processing of Cobalt Aluminate Blue Nano-Ceramic Pigment Using Sol–Gel Method. J. Aust. Ceram. Soc. 2019, 55, 219–227; https://doi.org/10.1007/s41779-018-0226-z.Suche in Google Scholar
16. Torkian, L.; Daghighi, M. Effects of β-alanine on Morphology and Optical Properties of CoAl2O4 Nanopowders as a Blue Pigment. Adv. Powder Technol. 2014, 25, 739–744; https://doi.org/10.1016/j.apt.2013.11.003.Suche in Google Scholar
17. El, J. Y.; ElHafdi, M.; Benchikhi, M.; El Ouatib, R.; Er-Rakho, L.; Essadki, A. Photocatalytic Degradation of Navy Blue Textile Dye by Nanoscale Cobalt Aluminate Prepared by Polymeric Precursor Method. Environ. Nanotechnol. Monit. Manag. 2019, 100259. https://doi.org/10.1016/j.enmm.2019.100259.Suche in Google Scholar
18. Bagtache, R.; Sebai, I.; Abdmeziem, K.; Trari, M. Visible Light Induced H2 Evolution on the Hetero-Junction Ag/NiO Prepared by Nitrate Route. Sol. Energy 2019, 177, 652–656; https://doi.org/10.1016/j.solener.2018.11.066.Suche in Google Scholar
19. Zhou, M.; Li, Y.; Zhang, Y.; Shu, Y.; Nian, S.; Cao, W.; Wu, Z. Synthesis and Characterization of Co1-xCaxAl2O4 Composite Blue Nano-Pigments by the Polyacrylamide Gel Method. Dyes Pigm. 2018, 148, 25–30; https://doi.org/10.1016/j.dyepig.2017.08.057.Suche in Google Scholar
20. Gingasu, D.; Mindru, I.; Culita, D. C.; Marinescu, G.; Somacescu, S.; Ianculescu, A.; Surdu, V.; Preda, S.; Oprea, O.; Vasile, B. S. Mentha Piperita-Mediated Synthesis of Cobalt Aluminate Nanoparticles and Their Photocatalytic Activity. J. Mater. Sci. Mater. Electron. 2021, 32, 11220–11231; https://doi.org/10.1007/s10854-021-05791-z.Suche in Google Scholar
21. Dumanli, F. T. S.; Gul, E. M.; Derun, E. M. Synthesis of Cobalt Aluminates by Using the Peel Extracts of Citrus Family Species. Main Group Chem. 2023, 22, 177–185; https://doi.org/10.3233/mgc-220099.Suche in Google Scholar
22. Giannakas, A. E.; Ladavos, A. K.; Armatas, G. S.; Pomonis, P. J. Surface Properties, Textural Features and Catalytic Performance for NO+CO Abatement of Spinels MAl2O4 (M= Mg, Co and Zn) Developed by Reverse and Bicontinuous Microemulsion Method. Appl. Surf. Sci. 2007, 253, 6969–6979; https://doi.org/10.1016/j.apsusc.2007.02.031.Suche in Google Scholar
23. Dumanli, F. T. S.; Derun, E. M. A Comparative Study of Ultrasonic-Assisted Methods to Synthesise Spinel (CoAl2O4) Nanoparticles. Ceram. Int. 2022, 48, 19047–19055.10.1016/j.ceramint.2022.03.193Suche in Google Scholar
24. Kaplan, A.; Kipcak, A. S.; Senberber, F. T.; Derun, E. M.; Piskin, S. A Low-Temperature, Environment-Friendly Approach to the Synthesis of Magnesium Borates Using Magnesium Waste Scraps. Main Group Met. Chem. 2015, 38, 99–110.10.1515/mgmc-2015-0004Suche in Google Scholar
25. Naseri, M. G.; Saion, E. B.; Ahangar, H. A.; Hashim, M.; Shaari, A. H. Simple Preparation and Characterization of Nickel Ferrite Nanocrystals by a Thermal Treatment Method. Powder Technol. 2011, 212, 80–88; https://doi.org/10.1016/j.powtec.2011.04.033.Suche in Google Scholar
26. Phan, C. M.; Nguyen, H. M. Role of Capping Agent in Wet Synthesis of Nanoparticles. J. Phys. Chem. A 2017, 121, 3213–3219; https://doi.org/10.1021/acs.jpca.7b02186.Suche in Google Scholar PubMed
27. Kumar, V.; Gohain, M.; Som, S.; Kumar, V.; Bezuindenhoudt, B. C. B.; Swart, H. C. Microwave Assisted Synthesis of ZnO Nanoparticles for Lighting and Dye Removal Application. Phys. B Condens. 2016, 480, 36–41; https://doi.org/10.1016/j.physb.2015.07.020.Suche in Google Scholar
28. Konicki, W.; Siber, D.; Narkiewicz, U. Removal of Rhodamine B from Aqueous Solution by ZnFe2O4 Nanocomposite with Magnetic Separation Performance. Pol. J. Chem. Technol. 2017, 19, 65–74; https://doi.org/10.1515/pjct-2017-0069.Suche in Google Scholar
29. Jethave, G.; Fegade, U.; Attarde, S.; Ingle, S.; Ghaedi, M.; Sabzehmeidani, M. M. Exploration of the Adsorption Capability by Doping Pb@ZnFe2O4 Nanocomposites (NCs) for Decontamination of Dye from Textile Wastewater. Heliyon 2019. https://doi.org/10.1016/j.heliyon.2019.e02412.Suche in Google Scholar PubMed PubMed Central
30. Zohra, R.; Meneceur, S.; Mohammed, H. A.; Hasan, G. G.; Bouafia, A.; Abdullah, J. A. A.; Alharthi, F.; Eddine, L. S. Enhanced Photocatalytic Degradation of Dyes and Antibiotics with Biosynthesized FeMn2O4 Nanocomposite under Sunlight Irradiation: Isotherm and Kinetic Study. Biomass Convers. Biorefinery 2023. https://doi.org/10.1007/s13399-023-04497-y.Suche in Google Scholar
31. Zhao, J.; Liu, J.; Li, N.; Wang, W.; Nan, J.; Zhao, Z.; Cui, F. Highly Efficient Removal of Bivalent Heavy Metals from Aqueous Systems by Magnetic Porous Fe3O4-MnO2: Adsorption Behavior and Process Study. Chem. Eng. J. 2016, 304, 737–746; https://doi.org/10.1016/j.cej.2016.07.003.Suche in Google Scholar
32. Behura, R.; Sakthivel, R.; Das, N. Synthesis of Cobalt Ferrite Nanoparticles from Waste Iron Ore Tailings and Spent Lithium Ion Batteries for Photo/sono-Catalytic Degradation of Congo Red. Powder Technol. 2021, 386, 519–527; https://doi.org/10.1016/j.powtec.2021.03.066.Suche in Google Scholar
33. Fardood, S. T.; Moradnia, F.; Ramazani, A. Green Synthesis and Characterisation of ZnMn2O4 Nanoparticles for Photocatalytic Degradation of Congo Red Dye and Kinetic Study. Micro Nano Lett 2019, 14, 986–991.10.1049/mnl.2019.0071Suche in Google Scholar
34. Chand, M.; Barthwal, S.; Rawat, A. S.; Khanuja, M.; Rawat, S. A Comparative Photocatalytic Degradation Study of Cationic and Anionic Dyes Using ZnIn2S4 Photocatalyst. Adv. Nat. Sci. Nanosci. Nanotechnol. 2023, 015014. https://doi.org/10.1088/2043-6262/acc732.Suche in Google Scholar
35. Zhang, E.; Wang, L.; Zhang, B.; Xie, Y.; Wang, G. Shape-dependent Photocatalytic Performance of SnFe2O4 Nanocrystals Synthesized by Hydrothermal Method. J. Sol-Gel Sci. Technol. 2019, 89, 355–360; https://doi.org/10.1007/s10971-018-4868-7.Suche in Google Scholar
36. Hariani, P. L.; Said, M.; Rachmat, A.; Riyanti, F.; Pratiwi, H. C.; Rizki, W. T. Preparation of NiFe2O4 Nanoparticles by Solution Combustion Method as Photocatalyst of Congo Red. Bull. Chem. React. Eng. 2021, 16, 481–490; https://doi.org/10.9767/bcrec.16.3.10848.481-490.Suche in Google Scholar
37. Wang, S.; Wei, X.; Gao, H.; Wei, Y. Effect of Amorphous Alumina and α-alumina on Optical, Color, Fluorescence Properties and Photocatalytic Activity of the MnAl2O4 Spinel Oxides. Optik 2019, 185, 301–310; https://doi.org/10.1016/j.ijleo.2019.03.147.Suche in Google Scholar
38. Nurmayansih, A.; Hariani, P. L.; Said, M. Synthesis NiFe2O4 Nanoparticles by Co-precipitation Method for Degradation of Congo Red Dye. Indones J. Fund. Appl. Chem. 2021, 6, 115–121; https://doi.org/10.24845/ijfac.v6.i3.115.Suche in Google Scholar
39. Senberber, F. T.; Ozdemir, O. D. Effect of Synthesis Parameters on the Color Performance of Blue CoAl2O4 Ceramic Pigment. Russ. J. Inorg. Chem. 2020, 65, 2020–2027; https://doi.org/10.1134/s0036023620140065.Suche in Google Scholar
40. Dumanli, F. T. S.; Derun, E. M. Hydrothermal Synthesis of CoAl2O4 Spinel: Effect of Reaction Conditions on the Characteristic and Morphological Features. Int. J. Mater. Res. 2022, 113, 1062–1070.10.1515/ijmr-2021-8736Suche in Google Scholar
41. Aguilar-Elgu´ezabal, A.; Rom´an-Aguirre, M.; De la Torre-S´aenz, L.; Piz´a-Ruiz, P.; Bocanegra-Bernal, M. Synthesis of CoAl2O4/Al2O3 Nanoparticles for Ceramic Blue Pigments. Ceram. Int. 2017, 43, 15254–15257; https://doi.org/10.1016/j.ceramint.2017.08.062.Suche in Google Scholar
42. Dippolito, V.; Andreozzi, G. B.; Bosi, F.; Halenius, U. Blue Spinel Crystals in the MgAl2O4-CoAl2O4 Series: Part I. Flux Growth and Chemical Characterization. Am. Min. 2012, 97, 1828–1833; https://doi.org/10.2138/am.2012.4138.Suche in Google Scholar
43. De Mendonca, V. R.; Ribeiro, C. Influence of TiO2 Morphological Parameters in Dye Photodegradation: a Comparative Study in Peroxo-Based Synthesis. Appl. Catal B. 2011, 105, 298–305; https://doi.org/10.1016/j.apcatb.2011.04.018.Suche in Google Scholar
44. Dumanli, F. T. S.; Gul, E. M.; Ozturk, Z.; Gurel, S.; Derun, E. M. Effects of Capping Agents on the Congo Red Adsorption of Ultrasonic-Assisted Synthesised Cobalt Aluminates. Water Air Soil Pollut 2024, 83. https://doi.org/10.1007/s11270-024-06885-0.Suche in Google Scholar
45. Zhao, S.; Guo, J.; Li, W.; Guo, H.; You, B. Fabrication of Cobalt Aluminate Nanopigments by Coprecipitation Method in Threonine Waterborne Solution. Dyes Pigm. 2018, 151, 130–139; https://doi.org/10.1016/j.dyepig.2017.12.062.Suche in Google Scholar
46. Taguchi, M.; Nakane, T.; Hashi, K.; Ohki, S.; Shimizu, T.; Sakka, Y.; Matsushita, A.; Abe, H.; Funazukuri, T.; Naka, T. Reaction Temperature Variations on the Crystallographic State of Spinel Cobalt Aluminate. Dalton Trans. 2013, 42, 7167–7176; https://doi.org/10.1039/c3dt32828g.Suche in Google Scholar PubMed
47. Peymannia, M.; Soleimani-Gorgani, A.; Ghahari, M.; Najafi, F. Production of a Stable and Homogeneous Colloid Dispersion of Nano CoAl2O4 Pigment for Ceramic Ink-Jet Ink. J. Eur. Ceram. Soc. 2014, 34, 3119–3126; https://doi.org/10.1016/j.jeurceramsoc.2014.03.022.Suche in Google Scholar
48. He, Y.; Cao, Y.; Liao, H.; Wang, J. A. Preparation of Porous Cobalt Aluminate and its Chromogenic Mechanism. Powder Technol. 2018, 324, 95–101; https://doi.org/10.1016/j.powtec.2017.08.056.Suche in Google Scholar
49. Ali, A. A.; El, F. E.; Ahmed, I. S. Near-infrared Reflecting Blue Inorganic Nano-Pigment Based on Cobalt Aluminate Spinel via Combustion Synthesis Method. Dyes Pigm. 2018, 158, 451–462.10.1016/j.dyepig.2018.05.058Suche in Google Scholar
50. Salem, S.; Jazayeri, S. H.; Bondioli, F.; Allahverdi, A.; Shirvani, M.; Ferrari, A. M. CoAl2O4 Nano Pigment Obtained by Combustion Synthesis. Int. J. Appl. Ceram. 2012, 9, 968–978; https://doi.org/10.1111/j.1744-7402.2011.02704.x.Suche in Google Scholar
51. Veronesi, P.; Leonelli, C.; Bondioli, F. Energy Efficiency in the Microwave-Assisted Solid-State Synthesis of Cobalt Aluminate Pigment. Technologies 2017, 42. https://doi.org/10.3390/technologies5030042.Suche in Google Scholar
52. Mindru, I.; Gingasu, D.; Patron, L.; Ianculescu, A.; Surdu, V. A.; Culita, D. C.; Preda, S.; Negut, C. D.; Oprea, O. A New Approach: Synthesis of Cobalt Aluminate Nanoparticles Using Tamarind Fruit Extract. Mater. Sci. Eng. B. 2019, 246, 42–48; https://doi.org/10.1016/j.mseb.2019.05.031.Suche in Google Scholar
53. Yuan, Y.; Li, Y.; Wang, M.; Huang, X.; Zhang, T.; Xue, K. H.; Yuan, J.; Yang, J. O.; Yang, X.; Miao, X.; Zhu, B. Ultrasound: A New Strategy for Artificial Synapses Modulation. InfoMat 2024, 6. https://doi.org/10.1002/inf2.12528.Suche in Google Scholar
54. Tatarchuck, T.; Danyliuk, N.; Shyichuk, A.; Macyk, W.; Naushad, M. Photocatalytic Degradation of Dyes Using Rutile TiO2 Synthesized by Reverse Micelle and Low Temperature Methods: Real-Time Monitoring of the Degradation Kinetics. J. Mol. Liq. 2021, 324. https://doi.org/10.1016/j.molliq.2021.117407.Suche in Google Scholar
55. Zhang, L.; Jiang, S.; Jia, Y.; Zhang, M.; Guo, J. Effects of Na+/H2O2 on Nitrogen Removal and Sludge Activity: Performance and Mechanism. J. Environ. Chem. Eng. 2024, 12. https://doi.org/10.1016/j.jece.2024.113194.Suche in Google Scholar
56. Zhu, W.; Yang, L.; Liu, F.; Si, Z.; Kuo, M.; Li, Z.; Chen, Z. Metal Ni Nanoparticles In-Situ Anchored on CdS Nanowires as Effective Cocatalyst for Boosting the Photocatalytic H2 Production and Degradation Activity. J. Alloys Compd. 2024, 973. https://doi.org/10.1016/j.jallcom.2023.172747.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde