Home On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
Article
Licensed
Unlicensed Requires Authentication

On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis

  • Hang Li ORCID logo EMAIL logo , Lili Chen , Xiaoguang Guan , Yang Cai , Xianglong Meng and Wei Cai
Published/Copyright: February 4, 2025
Become an author with De Gruyter Brill

Abstract

The microstructures and martensitic transformation of a Ti-rich Ti50.5Ni33.5Cu11.5Pd4.5 alloy aged at 500 °C for durations ranging from 15 min to 25 h were systematically investigated. With increasing aging time, the precipitates exhibit continuous growth; however, their quantity initially increases and subsequently decreases. The morphology of the precipitates evolves from granular to lamellar forms. Post-aging treatment, the transformation sequence transitions from a one-stage (B2–B19) to a two-stage process (B21–B191 and B22–B192) due to the precipitation of Ti2Cu-type particles, maintaining near-zero hysteresis. The two-stage martensitic transformation originates from the combined effects of stress distribution heterogeneities and variations in Ni content induced by aging precipitation.


Corresponding author: Hang Li, Institute of Bingtuan Energy Development Research, Shihezi University, 832000 Shihezi, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interests: All other authors state no conflict of interest.

  6. Research funding: The work was supported by the China Scholarship Council Visiting Scholar Program (No. 201908230066).

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Otsuka, K.; Ren, X. Prog. Mater. Sci. 2005, 50, 511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001.Search in Google Scholar

2. Oliveira, J. P.; Miranda, R. M.; Femandes, F. M. B. Prog. Mater. Sci. 2017, 88, 412–466. https://doi.org/10.1016/j.pmatsci.2017.04.008.Search in Google Scholar

3. Fukuda, T.; Yoshida, S.; Kakeshita, T. Scripta Mater. 2013, 68, 984–987. https://doi.org/10.1016/j.scriptamat.2013.02.057.Search in Google Scholar

4. Gunderov, D. V.; Maksutova, G.; Churakova, A.; Lukyanov, A.; Kreitcberg, A.; Raab, G. I.; Sabirov, I.; Prokoshkin, S. Scripta Mater. 2015, 102, 99–102. https://doi.org/10.1016/j.scriptamat.2015.02.023.Search in Google Scholar

5. Sutou, Y.; Omori, T.; Kainuma, R.; Ishida, K. Acta Mater. 2013, 61, 3842–3850. https://doi.org/10.1016/j.actamat.2013.03.022.Search in Google Scholar

6. Ma, J.; Kockar, B.; Evirgen, A.; Karaman, I.; Luo, Z.; Chumlyakov, Y. Acta Mater. 2012, 60, 2186–2195. https://doi.org/10.1016/j.actamat.2011.12.047.Search in Google Scholar

7. Yang, S. Y.; Liu, Y.; Wang, C. P.; Liu, X. J. Acta Mater. 2012, 60, 4255–4267. https://doi.org/10.1016/j.actamat.2012.04.029.Search in Google Scholar

8. Li, H.; Meng, X. L.; Cai, W. Mater. Sci. Eng. 2018, A 725, 359–363. https://doi.org/10.1016/j.msea.2018.04.030.Search in Google Scholar

9. Li, H.; Gao, Z.; Suh, J.-Y.; Han, H. N.; Ramamurty, U.; Jang, J.-I. Materialia 2024, 33, 102020. https://doi.org/10.1016/j.mtla.2024.102020.Search in Google Scholar

10. Sinha, A.; Mondal, B.; Chattopadhyay, P. Mater. Sci. Eng. 2013, A 561, 338–343. https://doi.org/10.1016/j.msea.2012.10.021.Search in Google Scholar

11. Sinha, A.; Mondal, B.; Chattopadhyay, P. Mater. Sci. Eng. 2013, A 561, 344–351. https://doi.org/10.1016/j.msea.2012.10.023.Search in Google Scholar

12. Miyazaki, S.; Ohmi, Y.; Otsuka, K.; Suzuki, Y. J. Phys. (France) 1982, 43, C4-255–C260. https://doi.org/10.1051/jphyscol:1982434.10.1051/jphyscol:1982434Search in Google Scholar

13. Miyazaki, S.; Otsuka, K. ISIJ Int. 1989, 29, 353–377. https://doi.org/10.2355/isijinternational.29.353.Search in Google Scholar

14. Kahn, H.; Huff, M. A.; Heuer, A. H. J. Manuf. Syst. 1998, 8, 213–221. https://doi.org/10.1088/0960-1317/8/3/007.Search in Google Scholar

15. Miyazaki, S.; Igo, Y.; Otsuka, K. Acta Metall. 1986, 34, 2045–2051. https://doi.org/10.1016/0001-6160(86)90263-4.Search in Google Scholar

16. Pelton, A. R.; Huang, G. H.; Moine, P.; Sinclair, R. Mater. Sci. Eng., A 2012, 532, 130–138. https://doi.org/10.1016/j.msea.2011.10.073.Search in Google Scholar

17. Vanloo, F. J. J.; Bastin, G. F.; Leenen, A. J. H. J. Less Common Metal 1978, 57, 111–121. https://doi.org/10.1016/0022-5088(78)90167-4.Search in Google Scholar

18. Nam, T. H.; Saburi, T.; Shimizu, K. Mater. Trans. Jim 1990, 31, 959–967. https://doi.org/10.2320/matertrans1989.31.959.Search in Google Scholar

19. Cui, J.; Chu, Y. S.; Famodu, O. O.; Furuya, Y.; Simpers, J. H.; James, R. D.; Ludwig, A.; Thienhaus, S.; Wuttig, M.; Zhang, Z. Y.; Takeuchi, I. Nat. Mater. 2006, 5, 286–290. https://doi.org/10.1038/nmat1593.Search in Google Scholar PubMed

20. Zhang, Z. Y.; James, R. D.; Muller, S. Acta Mater. 2009, 57, 4332–4352. https://doi.org/10.1016/j.actamat.2009.05.034.Search in Google Scholar

21. Delville, R.; Schryvers, D.; Zhang, Z. Y.; James, R. D. Scripta Mater. 2009, 60, 293–296. https://doi.org/10.1016/j.scriptamat.2008.10.025.Search in Google Scholar

22. Song, Y. T.; Chen, X.; Dabade, V.; Shield, T. W.; James, R. D. Nature 2013, 502, 85–88. https://doi.org/10.1038/nature12532.Search in Google Scholar PubMed

23. Srivastava, V.; Chen, X.; James, R. D. Appl. Phys. Lett. 2010, 97, 014101. https://doi.org/10.1063/1.3456562.Search in Google Scholar

24. Zarnetta, R.; Takahashi, R.; Young, M. L.; Savan, A.; Furuya, Y.; Thienhaus, S.; Maaß, B.; Rahim, M.; Frenzel, J.; Brunken, H.; Chu, Y. S.; Srivastava, V.; James, R. D.; Takeuchi, I.; Eggeler, G.; Ludwig, A. Adv. Funct. Mater. 2010, 20, 1917–1923. https://doi.org/10.1002/adfm.201090047.Search in Google Scholar

25. Meng, X. L.; Li, H.; Cai, W.; Hao, S. J.; Cui, L. S. Scripta Mater. 2015, 103, 30–33. https://doi.org/10.1016/j.scriptamat.2015.02.030.Search in Google Scholar

26. Li, H.; Meng, X. L.; Cai, W. J. Alloy. Compd. 2019, 791, 905–910. https://doi.org/10.1016/j.jallcom.2019.03.372.Search in Google Scholar

27. Li, H.; Meng, X. L.; Cai, W. Intermetallics 2020, 126, 106927. https://doi.org/10.1016/j.intermet.2020.106927.Search in Google Scholar

28. Li, H.; Meng, X. L.; Cai, W. J. Alloy. Compd. 2018, 765, 166–170. https://doi.org/10.1016/j.jallcom.2018.06.205.Search in Google Scholar

29. Meng, X. L.; Li, H.; Cai, W. Scripta Mater. 2016, 118, 29–32. https://doi.org/10.1016/j.scriptamat.2016.03.003.Search in Google Scholar

30. Li, H.; Meng, X. L.; Cai, W. J. Alloy. Compd. 2019, 780, 800–804. https://doi.org/10.1016/j.jallcom.2018.12.030.Search in Google Scholar

31. Ishida, A.; Sato, M. Philos. Mag. 2007, 87, 5523–5538. https://doi.org/10.1080/14786430701654394.Search in Google Scholar

32. Ishida, A.; Sato, M.; Ogawa, K. Philos. Mag. Lett. 2006, 86, 13–20. https://doi.org/10.1080/09500830500482308.Search in Google Scholar

33. Meng, X. L.; Sato, M.; Ishida, A. Philos. Mag. Lett. 2008, 88, 575–582. https://doi.org/10.1080/09500830802322152.Search in Google Scholar

34. Todinov, M. T. Acta Mater. 2000, 48, 4217–4224. https://doi.org/10.1016/S1359-6454(00)00280-9.Search in Google Scholar

35. Philip, P.; Mazanec, K. Scripta Mater. 2001, 45, 701–707. https://doi.org/10.1016/S1359-6462(01)01082-X.Search in Google Scholar

36. Fukuda, T.; Saburi, T.; Doi, K.; Nenno, S. Mater. Trans. Jim 1992, 33, 271–277. https://doi.org/10.2320/matertrans1989.33.271.Search in Google Scholar

37. Favier, D.; Liu, Y.; McCormick, P. G. Scripta Metall. Mater. 1993, 28, 669–672. https://doi.org/10.1016/0956-716X(93)90031-M.Search in Google Scholar

38. Bataillard, L.; Gotthardt, R. J. Phys. 1995, 5, C8-C647–C8-C652. IV https://doi.org/10.1051/jp4/199558647.Search in Google Scholar

39. Khalil-Allafi, J.; Ren, X.; Effeler, G. Acta Mater. 2002, 50, 793–803. https://doi.org/10.1016/S1359-6454(01)00385-8.Search in Google Scholar

40. Bhagyaraj, J.; Ramaiah, K. V.; Saikrishna, C. N.; Bhaumik, S. K.; Gouthama. J. Alloy. Compd. 2013, 581, 344–351. https://doi.org/10.1016/j.jallcom.2013.07.046.Search in Google Scholar

Received: 2024-01-15
Accepted: 2024-10-09
Published Online: 2025-02-04
Published in Print: 2025-02-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0022/html
Scroll to top button