Home Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
Article
Licensed
Unlicensed Requires Authentication

Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium

  • Gennady M. Poletaev ORCID logo EMAIL logo , Roman Y. Rakitin ORCID logo and Irina V. Zorya ORCID logo
Published/Copyright: February 4, 2025
Become an author with De Gruyter Brill

Abstract

The dissolution of a nickel nanoparticle in aluminium under the conditions of the crystalline and amorphous state of aluminium and nickel, which can be achieved, in particular, with severe plastic deformation of the powders of the initial mixture (mechanoactivation), was studied by means of molecular dynamics. It is shown that the state of the aluminium structure (crystalline or amorphous) has a relatively small effect on the intensity of mutual diffusion of Ni and Al up to the melting temperature of aluminium. This is due to the formation of a crystalline aluminium layer around the crystalline particle, which repeats the Ni lattice. In the case of the amorphous state of the nickel particle and the aluminium matrix, dissolution occurred much faster than in the crystalline state of nickel. That is, mutual diffusion occurs significantly more strongly in the case of the amorphous state of nickel compared to the case of amorphous aluminium at the same constant temperature. The diameter of the nickel nanoparticle in the considered range from 4 to 12 nm did not affect the temperature at which the mutual diffusion of Ni and Al sharply accelerated with varying temperature. This was due to the fact that the melting point of aluminium did not change when simulating particles of different sizes.


Corresponding author: Gennady M. Poletaev, Polzunov Altai State Technical University, Lenina Ave. 46, 656038 Barnaul, Russia, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Miracle, D. B. Acta Metall. Mater. 1993, 41, 649; https://doi.org/10.1016/0956-7151(93)90001-9.Search in Google Scholar

2. Tresa, P.; Sammy, T. J. Propul. Power 2006, 22, 361; https://doi.org/10.2514/1.18239.Search in Google Scholar

3. Reeves, R. V.; Mukasyan, A. S.; Son, S. F. J. Phys. Chem. 2010, 114, 14772; https://doi.org/10.1021/jp104686z.Search in Google Scholar

4. Rogachev, A. S. Russ. Chem. Rev. 2008, 77, 21; https://doi.org/10.1070/RC2008v077n01ABEH003748.Search in Google Scholar

5. Morris, M. A.; Leboeuf, M. Mater. Sci. Eng.: A 1997, 224, 1; https://doi.org/10.1016/S0921-5093(96)10532-3.Search in Google Scholar

6. Bohn, R.; Klassen, T.; Bormann, R. Intermetallics 2001, 9, 559; https://doi.org/10.1016/S0966-9795(01)00039-5.Search in Google Scholar

7. Kambara, M.; Uenishi, K.; Kobayashi, K. F. J. Mater. Sci. 2000, 35, 2897; https://doi.org/10.1023/A:1004771808047.10.1023/A:1004771808047Search in Google Scholar

8. Kimura, H. Phil. Mag. A 1996, 73, 723; https://doi.org/10.1080/01418619608242993.Search in Google Scholar

9. Boldyrev, V. V.; Tkacova, K. J. Mater. Synth. Process. 2000, 8, 121; https://doi.org/10.1023/A:1011347706721.10.1023/A:1011347706721Search in Google Scholar

10. Filimonov, V. Y.; Loginova, M. V.; Ivanov, S. G.; Sitnikov, A. A.; Yakovlev, V. I.; Sobachkin, A. V.; Negodyaev, A. Z.; Myasnikov, A. Y. Combust. Sci. Technol. 2020, 192, 457; https://doi.org/10.1080/00102202.2019.1571053.Search in Google Scholar

11. Loginova, M. V.; Yakovlev, V. I.; Filimonov, V. Yu.; Sitnikov, A. A.; Sobachkin, A. V.; Ivanov, S. G.; Gradoboev, A. V. Lett. Mater. 2018, 8, 129; https://doi.org/10.22226/2410-3535-2018-2-129-134.Search in Google Scholar

12. Fourmont, A.; Politano, O.; Le Gallet, S.; Desgranges, C.; Baras, F. J. Appl. Phys. 2021, 129, 065301. https://doi.org/10.1063/5.0037397.Search in Google Scholar

13. Baras, F.; Bizot, Q.; Fourmont, A.; Le Gallet, S.; Politano, O. Appl. Phys. A 2021, 127, 555; https://doi.org/10.1007/s00339-021-04700-9.Search in Google Scholar

14. Purja Pun, G. P.; Mishin, Y. Philos. Mag. 2009, 89, 3245; https://doi.org/10.1080/14786430903258184.Search in Google Scholar

15. Levchenko, E. V.; Ahmed, T.; Evteev, A. V. Acta Mater. 2017, 136, 74; https://doi.org/10.1016/j.actamat.2017.06.056.Search in Google Scholar

16. Poletaev, G. M.; Rakitin, R. Y. Mater. Physi. Mech. 2022, 48, 452; https://doi.org/10.18149/MPM.4832022_15.Search in Google Scholar

17. Chen, C.; Zhang, F.; Xu, H.; Yang, Z.; Poletaev, G. M. J. Mater. Sci. 2022, 57, 1833; https://doi.org/10.1007/s10853-021-06837-7.Search in Google Scholar

18. Poletaev, G. M. Molecular Dynamics Research (MDR). In Certificate Of State Registration of a Computer Program No. 2015661912 Dated; Rospatent: Moscow, 2015.Search in Google Scholar

19. Levchenko, E. V.; Evteev, A. V.; Lorscheider, T.; Belova, I. V.; Murch, G. E. Comput. Mater. Sci. 2013, 79, 316; https://doi.org/10.1016/j.commatsci.2013.06.005.Search in Google Scholar

20. Cherukara, M. J.; Weihs, T. P.; Strachan, A. Acta Mater. 2015, 96, 1; https://doi.org/10.1016/j.actamat.2015.06.008.Search in Google Scholar

21. Poletaev, G. M.; Bebikhov, Y.V.; Semenov, A. S.; Sitnikov, A. A. J. Exp. Theor. Phys. 2023, 136, 477; https://doi.org/10.1134/S1063776123040118.Search in Google Scholar

22. Phillpot, S. R.; Lutsko, J. F.; Wolf, D.; Yip, S. Phys. Rev. B 1989, 40, 2831; https://doi.org/10.1103/PhysRevB.40.2831.Search in Google Scholar

23. Wejrzanowski, T.; Lewandowska, M.; Sikorski, K.; Kurzydlowski, K. J. J. Appl. Phys. 2014, 116, 164302; https://doi.org/10.1063/1.4899240.Search in Google Scholar

24. Noori, Z.; Panjepour, M.; Ahmadian, M. J. Mater. Res. 2015, 30, 1648; https://doi.org/10.1557/jmr.2015.109.Search in Google Scholar

25. Qi, Y.; Cagin, Т.; Johnson, W. L.; Goddard, W. A.III.. J. Chem. Phys. 2001, 115, 385; https://doi.org/10.1063/1.1373664.Search in Google Scholar

26. Poletaev, G. M.; Gafner, Y. Y.; Gafner, S. L. Lett. Mater. 2023, 13, 298; https://doi.org/10.22226/2410-3535-2023-4-298-303.Search in Google Scholar

27. Xiong, S.; Qi, W.; Cheng, Y.; Huang, B.; Wang, M.; Li, Y. Phys. Chem. Chem. Phys. 2011, 13, 10652; https://doi.org/10.1039/C0CP90161J.Search in Google Scholar

28. Hamilton, J. C.; Foiles, S. M. Phys. Rev. Lett. 1995, 75, 882; https://doi.org/10.1103/PhysRevLett.75.882.Search in Google Scholar PubMed

29. Wang, Y.; Ruterana, P.; Kret, S.; Chen, J.; El Kazzi, S.; Desplanque, L.; Wallart, X. Appl. Phys. Lett. 2012, 100, 262110; https://doi.org/10.1063/1.4731787.Search in Google Scholar

Received: 2023-06-05
Accepted: 2024-10-08
Published Online: 2025-02-04
Published in Print: 2025-02-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0187/html
Scroll to top button