Abstract
Carbon dots are regarded as a brand new class of nanostructures in the carbonaceous family that have piqued the curiosity of researchers in a wide range of bio applications. This work focuses on the synthesis and characterization of carbon dots, as well as their latent fingerprint detection and antibacterial/antifungal capabilities. Highly luminous carbon dots were prepared by optimizing simple hydrothermal carbonization settings at 180 °C for 12 h using lemon juice as a raw precursor. The resulting product was examined using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffractometery, and ultraviolet–visible spectrophotometer. The as-prepared carbon dots were found to be extremely bright when excited under ultraviolet light (λ = 365 nm). The presence of carbon and oxygen functionalities on the surface of the carbon dots was revealed by infrared spectrocopy. The diffraction pattern confirmed the amorphous structure of the carbon dots, with an average size of 7 nm determined using the Scherrer equation. The surface morphology analysis revealed that the carbon dots exhibited an aggregated form with irregular spherical shapes. The chemical structure examination validated the elemental makeup of the prepared lemon juice-based carbon dots. The detection of latent fingerprints on carbon dots under ultraviolet light yielded positive results. In addition, the obtained carbon dots displayed antifungal and antibacterial activity against tested pathogenic fungal and bacterial strains.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Ghirardello, M.; Ramos-Soriano, J.; Galan, M. C. Carbon Dots as an Emergent Class of Antimicrobial Agents. Nanomate 2021, 11 (8), 1877. https://doi.org/10.3390/nano11081877.Search in Google Scholar PubMed PubMed Central
2. Kurian, M.; Paul, A. Recent Trends in the Use of Green Sources for Carbon Dot Synthesis–A Short Review. Carbon Trends 2021, 3, 100032. https://doi.org/10.1016/j.cartre.2021.100032.Search in Google Scholar
3. Mohammed, J.; Desu, P. K.; Namratha, J. R.; Rao, G. K. Applications of Carbon Dots (CDs) in Drug Delivery. Adv. Pharmacol. Pharm. 2023, 11 (1), 36–45. https://doi.org/10.13189/app.2023.110104.Search in Google Scholar
4. Chahal, S.; Macairan, J. R.; Yousefi, N.; Tufenkji, N.; Naccache, R. Green Synthesis of Carbon Dots and Their Applications. RSC Adv. 2021, 11 (41), 25354–25363. https://doi.org/10.1039/D1RA04718C.Search in Google Scholar
5. Venugopalan, P.; Vidya, N.; Maya, C. Cassia Fistula Flower Extract Derived Carbon Dots for Photocatalytic Degradation of Methylene Blue. Int. J. Environ. Anal. Chem. 2023, 1–11. https://doi.org/10.1080/03067319.2023.2182208.Search in Google Scholar
6. Jing, H. H.; Bardakci, F.; Akgöl, S.; Kusat, K.; Adnan, M.; Alam, M. J.; Gupta, R.; Sahreen, S.; Chen, Y.; Gopinath, S. C.; Sasidharan, S. Green Carbon Dots: Synthesis, Characterization, Properties and Biomedical Applications. J. Funct. Biomater. 2023, 14 (1), 27. https://doi.org/10.3390/jfb14010027.Search in Google Scholar PubMed PubMed Central
7. Liu, J.; Li, R.; Yang, B. Carbon Dots: a New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6 (12), 2179–2195. https://doi.org/10.1021/acscentsci.0c01306.Search in Google Scholar PubMed PubMed Central
8. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. Am. Chem. Soc. 2004, 126 (40), 12736–12737. https://doi.org/10.1021/ja040082h.Search in Google Scholar PubMed
9. Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S. Y. Quantum-sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128 (24), 7756–7757. https://doi.org/10.1021/ja062677d.Search in Google Scholar PubMed
10. Cui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon Dots: Synthesis, Properties and Applications. Nanomate 2021, 11 (12), 3419. https://doi.org/10.3390/nano11123419.Search in Google Scholar PubMed PubMed Central
11. Iannazzo, D.; Pistone, A.; Ferro, S.; De Luca, L.; Monforte, A. M.; Romeo, R.; Maria Rosa Buemi, M. R.; Pannecouque, C. Graphene Quantum Dots Based Systems as HIV Inhibitors. Bioconjugate Chem. 2018, 29 (9), 3084–3093. https://doi.org/10.1021/acs.bioconjchem.8b00448.Search in Google Scholar PubMed
12. Qiao, Z. A.; Wang, Y.; Gao, Y.; Li, H.; Dai, T.; Liu, Y.; Huo, Q. Commercially Activated Carbon as the Source for Producing Multicolor Photoluminescent Carbon Dots by Chemical Oxidation. Chem. Commun. 2010, 46 (46), 8812–8814. https://doi.org/10.1039/C0CC02724C.Search in Google Scholar PubMed
13. Hu, S. L.; Niu, K. Y.; Sun, J.; Yang, J.; Zhao, N. Q.; Du, X. W. One-step Synthesis of Fluorescent Carbon Nanoparticles by Laser Irradiation. J. Mater. Chem. 2009, 19 (4), 484–488. https://doi.org/10.1039/B812943F.Search in Google Scholar
14. Wang, B.; Yu, J.; Sui, L.; Zhu, S.; Tang, Z.; Yang, B.; Lu, S. Rational Design of Multi-color-emissive Carbon Dots in a Single Reaction System by Hydrothermal. Adv. Sci. 2021, 8 (1), 2001453. https://doi.org/10.1002/advs.202001453.Search in Google Scholar PubMed PubMed Central
15. Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave Synthesis of Fluorescent Carbon Nanoparticles with Electrochemiluminescence Properties. Chem. Commun. 2009 (34), 5118–5120. https://doi.org/10.1039/B907612C.Search in Google Scholar
16. Kwon, W.; Do, S.; Rhee, S. W. Formation of Highly Luminescent Nearly Monodisperse Carbon Quantum Dots via Emulsion-Templated Carbonization of Carbohydrates. RSC Adv. 2012, 2 (30), 11223–11226. https://doi.org/10.1039/C2RA22186A.Search in Google Scholar
17. Zulfajri, M.; Abdelhamid, H. N.; Sudewi, S.; Dayalan, S.; Rasool, A.; Habib, A.; Huang, G. G. Plant Part-Derived Carbon Dots for Biosensing. Biosensors 2020, 10 (6), 68. https://doi.org/10.3390/bios10060068.Search in Google Scholar PubMed PubMed Central
18. Ullal, N.; Muthamma, K.; Sunil, D. Carbon Dots from Eco-Friendly Precursors for Optical Sensing Application: an Up-To-Date Review. Chem. Pap. 2022, 76 (10), 6097–6127. https://doi.org/10.1007/s11696-022-02353-3.Search in Google Scholar
19. Vandarkuzhali, S. A. A.; Jeyalakshmi, V.; Sivaraman, G.; Singaravadivel, S.; Krishnamurthy, K. R.; Viswanathan, B. Highly Fluorescent Carbon Dots from Pseudo-stem of Banana Plant: Applications as Nanosensor and Bio-Imaging Agents. Sens. Actuators B: Chem. 2017, 252, 894–900. https://doi.org/10.1016/j.snb.2017.06.088.Search in Google Scholar
20. Kapitonov, A. N.; Egorova, M. N.; Tomskaya, A. E.; Smagulova, S. A.; Alekseev, A. A. Hydrothermal synthesis of carbon dots and their luminescence. In AIP Conf. Proc.; AIP Publishing: Melville, NY, USA, Vol. 2041, 2018; p 030003. https://doi.org/10.1063/1.5079363.Search in Google Scholar
21. Liu, L.; Gong, H.; Li, D.; Zhao, L. Synthesis of Carbon Dots from Pear Juice for Fluorescence Detection of Cu2+ Ion in Water. J. Nanosci. Nanotechnol. 2018, 18 (8), 5327–5332. https://doi.org/10.1166/jnn.2018.15356.Search in Google Scholar PubMed
22. Carvalho, J.; Santos, L. R.; Germino, J. C.; Terezo, A. J.; Moreto, J. A.; Quites, F. J.; Freitas, R. G. Hydrothermal Synthesis to Water-Stable Luminescent Carbon Dots from Acerola Fruit for Photoluminescent Composites Preparation and its Application as Sensors. Mater. Res. 2019, 22, e20180920. https://doi.org/10.1590/1980-5373-MR-2018-0920.Search in Google Scholar
23. Murugesan, P.; Moses, J. A.; Anandharamakrishnan, C. One Step Synthesis of Fluorescent Carbon Dots from Neera for the Detection of Silver Ions. Spectrosc. Lett. 2020, 53 (6), 407–415. https://doi.org/10.1080/00387010.2020.1764589.Search in Google Scholar
24. Eskalen, H.; Çeşme, M.; Kerli, S.; Özğan, Ş. Green Synthesis of Water-Soluble Fluorescent Carbon Dots from Rosemary Leaves: Applications in Food Storage Capacity, Fingerprint Detection, and Antibacterial Activity. J. Chem. Res. 2021, 45 (5–6), 428–435. https://doi.org/10.1177/1747519820953823.Search in Google Scholar
25. Jhonsi, M. A.; Ananth, D. A.; Nambirajan, G.; Sivasudha, T.; Yamini, R.; Bera, S.; Kathiravan, A. Antimicrobial Activity, Cytotoxicity and DNA Binding Studies of Carbon Dots. Spectrochim. Acta-A: Mol. Biomol. Spectrosc. 2018, 196, 295–302. https://doi.org/10.1016/j.saa.2018.02.030.Search in Google Scholar PubMed
26. Ye, Z.; Li, G.; Lei, J.; Liu, M.; Jin, Y.; Li, B. One-step and One-Precursor Hydrothermal Synthesis of Carbon Dots with Superior Antibacterial Activity. ACS Appl. Bio Mater. 2020, 3 (10), 7095–7102. https://doi.org/10.1021/acsabm.0c00923.Search in Google Scholar PubMed
27. Saravanan, A.; Maruthapandi, M.; Das, P.; Luong, J. H.; Gedanken, A. Green Synthesis of Multifunctional Carbon Dots with Antibacterial Activities. Nanomate 2021, 11 (2), 369. https://doi.org/10.3390/nano11020369.Search in Google Scholar PubMed PubMed Central
28. Roy, S.; Ezati, P.; Rhim, J. W.; Molaei, R. Preparation of Turmeric-Derived Sulfur-Functionalized Carbon Dots: Antibacterial and Antioxidant Activity. J. Mater. Sci. 2022, 57 (4), 2941–2952. https://doi.org/10.1007/s10853-021-06804-2.Search in Google Scholar
29. Qureshi, W. A.; Vivekanandan, B.; Jayaprasath, J. A.; Ali, D.; Alarifi, S.; Deshmukh, K. Antimicrobial Activity and Characterization of Pomegranate Peel-Based Carbon Dots. J. Nanomater. 2021, 2021 (1), 9096838. https://doi.org/10.1155/2021/9096838.Search in Google Scholar
30. Alexis Gonzalez-Reyna, M.; Liliana Espana-Sanchez, B.; Andres Molina, G.; Luis Lopez-Miranda, J.; Mendoza-Cruz, R.; Esparza, R.; Estevez, M. Carbon Dots Synthesized from Cinchona Pubescens Vahl. An Efficient Antibacterial Nanomaterial and Bacterial Detector. ChemistrySelect 2022, 7 (17). https://doi.org/10.1002/slct.202104530.Search in Google Scholar
31. Shahraki, H. S.; Bushra, R.; Shakeel, N.; Ahmad, A.; Ahmad, M.; Ritzoulis, C. Papaya Peel Waste Carbon Dots/reduced Graphene Oxide Nanocomposite: from Photocatalytic Decomposition of Methylene Blue to Antimicrobial Activity. J. Bioresour. Bioprod. 2023, 8 (2), 162–175. https://doi.org/10.1016/j.jobab.2023.01.009.Search in Google Scholar
32. Cheng, S.; Dong, X.; Wang, H.; Song, Y.; Tan, M. High Antibacterial Activity of Spermine Functionalized Carbon Dots and its Potential Application in Sausage Preservation. Food Bioproc. Technol. 2023, 16 (12), 3003–3018. https://doi.org/10.1007/s11947-023-03091-4.Search in Google Scholar
33. Tyagi, A.; Tripathi, K. M.; Singh, N.; Choudhary, S.; Gupta, R. K. Green Synthesis of Carbon Quantum Dots from Lemon Peel Waste: Applications in Sensing and Photocatalysis. RSC Adv. 2016, 6 (76), 72423–72432. https://doi.org/10.1039/C6RA10488F.Search in Google Scholar
34. Ding, H.; Ji, Y.; Wei, J. S.; Gao, Q. Y.; Zhou, Z. Y.; Xiong, H. M. Facile Synthesis of Red-Emitting Carbon Dots from Pulp-free Lemon Juice for Bioimaging. J. Mater. Chem. B 2017, 5 (26), 5272–5277. https://doi.org/10.1039/C7TB01130J.Search in Google Scholar PubMed
35. Hoan, B. T.; Van Huan, P.; Van, H. N.; Nguyen, D. H.; Tam, P. D.; Nguyen, K. T.; Pham, V. H. Luminescence of Lemon-derived Carbon Quantum Dot and its Potential Application in Luminescent Probe for Detection of Mo6+ Ions. Lumin. 2018, 33 (3), 545–551. https://doi.org/10.1002/bio.3444.Search in Google Scholar PubMed
36. Chatzimitakos, T.; Kasouni, A.; Sygellou, L.; Avgeropoulos, A.; Troganis, A.; Stalikas, C. Two of a Kind but Different: Luminescent Carbon Quantum Dots from Citrus Peels for Iron and Tartrazine Sensing and Cell Imaging. Talanta 2017, 175, 305–312. https://doi.org/10.1016/j.talanta.2017.07.053.Search in Google Scholar PubMed
37. Hoan, B. T.; Thanh, T. T.; Tam, P. D.; Trung, N. N.; Cho, S.; Pham, V. H. A Green Luminescence of Lemon Derived Carbon Quantum Dots and Their Applications for Sensing of V5+ Ions. Mater. Sci. Eng. B. 2019, 251, 114455. https://doi.org/10.1016/j.mseb.2019.114455.Search in Google Scholar
38. Kundu, A.; Basu, S.; Maity, B. Upcycling Waste: Citrus Limon Peel-Derived Carbon Quantum Dots for Sensitive Detection of Tetracycline in the Nanomolar Range. ACS Omega 2023, 8 (39), 36449–36459. https://doi.org/10.1021/acsomega.3c05424.Search in Google Scholar PubMed PubMed Central
39. Tadesse, A.; Hagos, M.; RamaDevi, D.; Basavaiah, K.; Belachew, N. Fluorescent-nitrogen-doped Carbon Quantum Dots Derived from Citrus Lemon Juice: Green Synthesis, Mercury (II) Ion Sensing, and Live Cell Imaging. ACS Omega 2020, 5 (8), 3889–3898. https://doi.org/1010.1021/acsomega.9b03175.10.1021/acsomega.9b03175Search in Google Scholar PubMed PubMed Central
40. Sahana, S.; Gautam, A.; Singh, R.; Chandel, S. A Recent Update on Development, Synthesis Methods, Properties and Application of Natural Products Derived Carbon Dots. Nat. Prod. Bioprospect. 2023, 13 (1), 51. https://doi.org/10.1007/s13659-023-00415-x.Search in Google Scholar PubMed PubMed Central
41. Qu, D.; Wang, X.; Bao, Y.; Sun, Z. Recent Advance of Carbon Dots in Bio-Related Applications. J. Phys. Mater. 2020, 3 (2), 022003. https://doi.org/10.1088/2515-7639/ab7cb9.Search in Google Scholar
42. Ftekan, A. K.; Alobaidi, Y. M.; Hamza, A. M. Antibacterial Activities of Carbon Quantum Dots Derived from Lemon Juice. AIP Conf. Proc. 2022, 2437 (1), 020099. https://doi.org/10.1063/5.0104906.Search in Google Scholar
43. Karimi, M.; Sadeghi, E.; Zahedifar, M. Carbon Quantum Dots Extracted from Natural Lemon Juice: Efficient Material for Fluorescence and Antibacterial Applications. J. Adv. Biomed. Sci. 2022, 12 (2), 152–161. https://doi.org/10.18502/jabs.v12i2.9878.Search in Google Scholar
44. Jayakumar, A.; Radoor, S.; Shin, G. H.; Kim, J. T. Lemon Peel-Based Fluorescent Carbon Quantum Dots as a Functional Filler in Polyvinyl Alcohol-Based Films for Active Packaging Applications. Ind. Crop. Prod. 2024, 209, 117968. https://doi.org/10.1016/j.indcrop.2023.117968.Search in Google Scholar
45. Wazir, A. H.; Khan, Q.; Ahmad, N.; Ullah, F.; Quereshi, I.; Ali, H. Antimicrobial Evaluation and Characterization of Copper Nanoparticles Synthesized by the Simple Chemical Method. Korean J. Mater. Res. 2022, 32 (2), 80–84. https://doi.org/10.3740/MRSK.2022.32.2.80.Search in Google Scholar
46. Muktha, H.; Sharath, R.; Kottam, N.; Smrithi, S. P.; Samrat, K.; Ankitha, P. Green Synthesis of Carbon Dots and Evaluation of its Pharmacological Activities. BioNanoSci 2022, 10, 731–744. https://doi.org/10.1007/s12668-020-00741-1.Search in Google Scholar
47. Bennett, J. V.; Brodie, J. L.; Benner, E. J.; Kirby, W. M. Simplified, Accurate Method for Antibiotic Assay of Clinical Specimens. Appl. Microbiol. 1966, 14 (2), 170–177. https://doi.org/10.1128/am.14.2.170-177.1966.Search in Google Scholar PubMed PubMed Central
48. Sharma, B.; Kumar, P. In Vitro Antifungal Potency of Some Plant Extracts against Fusarium Oxysporum. Int. J. Green Pharm. 2009, 3 (1), 63. https://doi.org/10.4103/0973-8258.49377.Search in Google Scholar
49. Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angew. Chem., Int. Ed. 2013, 52(14), 3953-3957. https://doi.org/10.1002/anie.201300519.Search in Google Scholar PubMed
50. Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S. Simple One-step Synthesis of Highly Luminescent Carbon Dots from Orange Juice: Application as Excellent Bio-Imaging Agents. Chem. Comm. 2012, 48 (70), 8835–8837. https://doi.org/10.1039/C2CC33796G.Search in Google Scholar PubMed
51. De, B.; Karak, N. A Green and Facile Approach for the Synthesis of Water Soluble Fluorescent Carbon Dots from Banana Juice. Rsc Adv 2013, 3 (22), 8286–8290. https://doi.org/10.1039/C3RA00088E.Search in Google Scholar
52. Wazir, A. H.; Manan, A.; Khan, M.; Qurashi, I. U.; Khan, W. N.; Yaqoob, K.; Ahmad, S. Synthesis and Characterization of Carbon Micro Balls from Graphite by the Arc Discharge Method. Pak. J. Anal. Environ. 2019, 20 (1), 88. https://doi.org/10.21743/pjaec/2019.06.12.Search in Google Scholar
53. Pete, A. M.; Ingle, P. U.; Raut, R. W.; Shende, S. S.; Rai, M.; Minkina, T. M.; Rajput, V. D.; Kalinitchenk, V. P.; Gade, A. K. Biogenic Synthesis of Fluorescent Carbon Dots (CDs) and Their Application in Bioimaging of Agricultural Crops. Nanomate 2023, 13 (1), 209. https://doi.org/10.3390/nano13010209.Search in Google Scholar PubMed PubMed Central
54. Wang, H.; Sun, C.; Chen, X.; Zhang, Y.; Colvin, V. L.; Rice, Q.; Seo, J.; Feng, S.; Wang, S.; William, W. Y. Excitation Wavelength Independent Visible Color Emission of Carbon Dots. Nanoscale 2017, 9 (5), 1909–1915. https://doi.org/10.1039/C6NR09200D.Search in Google Scholar
55. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, Green, and Blue Luminescence by Carbon Dots: Full-color Emission Tuning and Multicolor Cellular Imaging. Angew. Chem., Int. Ed. 2015, 127 (18), 5450–5453. https://doi.org/10.1002/anie.201501193.Search in Google Scholar PubMed
56. Wazir, A.; Kundi, I. W.; Khan, W. N.; Manan, A.; Querashi, I.; Yaqoob, K. Synthesis and Characterization of Graphene Sheets from Graphite through Electrochemical Exfoliation and Microwave Reduction. Key Eng. Mater. 2021, 875, 127–137. https://doi.org/10.4028/www.scientific.net/KEM.875.127.Search in Google Scholar
57. Selvaraju, N.; Ganesh, P. S.; Palrasu, V.; Venugopal, G.; Mariappan, V. Evaluation of Antimicrobial and Antibiofilm Activity of Citrus Medica Fruit Juice Based Carbon Dots against Pseudomonas aeruginosa. ACS Omega 2022, 7 (41), 36227–36234. https://doi.org/10.1021/acsomega.2c03465.Search in Google Scholar PubMed PubMed Central
58. Shaikh, A. F.; Tamboli, M. S.; Patil, R. H.; Bhan, A.; Ambekar, J. D.; Kale, B. B. Bioinspired Carbon Quantum Dots: an Antibiofilm Agents. J. Nanosci. Nanotechnol. 2019, 19 (4), 2339–2345. https://doi.org/10.1166/jnn.2019.16537.Search in Google Scholar PubMed
59. Va, A.; Panakkal, T.; Anappara, A. A.; Nk, R. Acetic Acid Derived Carbon Dots as Efficient pH and Bio-Molecule Sensor. Int. J. Environ. Anal. Chem. 2021, 101 (4), 506–512. https://doi.org/10.1080/03067319.2019.1669581.Search in Google Scholar
60. Singh, L.; Kishore, K.; Singh, V. Structural and Functional Study of Fluorescent Carbon Dots Synthesized from Lemon-Peel via One Step Microwave Irradiation Method. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1248 (1), 012053. https://doi.org/10.1088/1757-899X/1248/1/012053.Search in Google Scholar
61. Muro-Hidalgo, J. M.; Bazany-Rodríguez, I. J.; Hernández, J. G.; Pabello, V. M. L.; Thangarasu, P. Histamine Recognition by Carbon Dots from Plastic Waste and Development of Cellular Imaging: Experimental and Theoretical Studies. J. Fluoresc. 2023, 33 (5), 2041–2059. https://doi.org/10.1007/s10895-023-03201-7.Search in Google Scholar PubMed PubMed Central
62. Palanimuthu, K.; Subbiah, U.; Sundharam, S.; Munusamy, C. S Pirulina Carbon Dots: a Promising Biomaterial for Photocatalytic Textile Industry Reactive Red M8B Dye Degradation. Environ. Sci. Pollut. Res. 2023, 30 (18), 52073–52086. https://doi.org/10.1007/s11356-023-25987-6.Search in Google Scholar PubMed
63. Verhagen, A.; Kelarakis, A. Carbon Dots for Forensic Applications: A Critical Review. Nanomate 2020, 10 (8), 1535. https://doi.org/10.3390/nano10081535.Search in Google Scholar PubMed PubMed Central
64. Milenkovic, I.; Algarra, M.; Alcoholado, C.; Cifuentes, M.; Lázaro-Martínez, J. M.; Rodríguez-Castellón, E.; Mutavdžić, D.; Radotić, K.; Bandosz, T. J. Fingerprint Imaging Using N-Doped Carbon Dots. Carbon 2019, 144, 791–797. https://doi.org/10.1016/j.carbon.2018.12.102.Search in Google Scholar
65. Varghese, M.; Balachandran, M. Antibacterial Efficiency of Carbon Dots against Gram-Positive and Gram-Negative Bacteria: A Review. J. Environ. Chem. Eng. 2021, 9 (6), 106821. https://doi.org/10.1016/j.jece.2021.106821.Search in Google Scholar
66. Dong, X.; Liang, W.; Meziani, M. J.; Sun, Y. P.; Yang, L. Carbon Dots as Potent Antimicrobial Agents. Theranostics 2020, 10 (2), 671. https://doi.org/10.7150/thno.39863.Search in Google Scholar PubMed PubMed Central
67. Zhang, Q.; Fu, J.; Lin, H.; Xuan, G.; Zhang, W.; Chen, L.; Wang, G. Shining Light on Carbon Dots: Toward Enhanced Antibacterial Activity for Biofilm Disruption. Biotechnol. J. 2024, 19 (5), 2400156. https://doi.org/10.1002/biot.202400156.Search in Google Scholar PubMed
68. Parham, S.; Parham, S. S.; Nur, H. Carbon dots in antibacterial, antiviral, antifungal, and antiparasitic agents. In Carbon Dots in Biology: Synthesis, Properties, Biological and Pharmaceutical Applications; Tukhliyivich, B. E.; Verma, D. K., Eds.; De Gruyter: Berlin, Germany, 2023; pp 1620–1636. https://doi.org/10.1515/9783110799958-011.Search in Google Scholar
69. Lin, F.; Wang, Z.; Wu, F. G. Carbon Dots for Killing Microorganisms: An Update since 2019. Pharm 2022, 15 (10), 1236. https://doi.org/10.3390/ph15101236.Search in Google Scholar PubMed PubMed Central
70. Al-Zubaidi, S.; Al-Ayafi, A.; Abdelkader, H. Biosynthesis, Characterization and Antifungal Activity of Silver Nanoparticles by Aspergillus niger Isolate. J. Nanotechnol. Res. 2019, 1 (1), 23–36. https://doi.org/10.26502/jnr.2688-8521002.Search in Google Scholar
71. Gedda, G.; Sankaranarayanan, S. A.; Putta, C. L.; Gudimella, K. K.; Rengan, A. K.; Girma, W. M. Green Synthesis of Multi-Functional Carbon Dots from Medicinal Plant Leaves for Antimicrobial, Antioxidant, and Bioimaging Applications. Sci. Rep. 2023, 13 (1), 6371. https://doi.org/1010.1038/s41598-023-33652-8.10.1038/s41598-023-33652-8Search in Google Scholar PubMed PubMed Central
72. Wu, Y.; Li, C.; van der Mei, H. C.; Busscher, H. J.; Ren, Y. Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics 2021, 10 (6), 623. https://doi.org/10.3390/antibiotics10060623.Search in Google Scholar PubMed PubMed Central
73. Maruthapandi, M.; Saravanan, A.; Das, P.; Luong, J. H.; Gedanken, A. Microbial Inhibition and Biosensing with Multifunctional Carbon Dots: Progress and Perspectives. Biotechnol. Adv. 2021, 53, 107843. https://doi.org/10.1016/j.biotechadv.2021.107843.Search in Google Scholar PubMed
74. Priyadarshini, E.; Kumar, R.; Balakrishnan, K.; Pandit, S.; Kumar, R.; Jha, N. K.; Gupta, P. K. Biofilm Inhibition on Medical Devices and Implants Using Carbon Dots: An Updated Review. ACS Appl. Bio Mater. 2024, 7 (5), 2604–2619. https://doi.org/10.1021/acsabm.4c00024.Search in Google Scholar PubMed
75. Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small 2015, 11 (14), 1620–1636. https://doi.org/10.1002/smll.201402648.Search in Google Scholar PubMed
76. Jiang, Y.; Yin, C.; Mo, J.; Wang, X.; Wang, T.; Li, G.; Zhou, Q. Recent Progress in Carbon Dots for Anti-pathogen Applications in Oral Cavity. Front. Cell. Infect. Microbiol. 2023, 13, 1251309. https://doi.org/10.3389/fcimb.2023.1251309.Search in Google Scholar PubMed PubMed Central
77. Sturabotti, E.; Camilli, A.; Georgian Moldoveanu, V.; Bonincontro, G.; Simonetti, G.; Valletta, A.; Serangeli, I.; Miranda, E.; Amato, F.; Marrani, A. G.; Migneco, L. M.; Sennato, S.; Simonis, B.; Vetica, F.; Leonelli, F. Targeting the Antifungal Activity of Carbon Dots against Candida Albicans Biofilm Formation by Tailoring Their Surface Functional Groups. Chem. Eur. J. 2024, 30 (18), e202303631. https://doi.org/10.1002/chem.202303631.Search in Google Scholar PubMed
78. Ran, H. H.; Cheng, X.; Bao, Y. W.; Hua, X. W.; Gao, G.; Zhang, X.; Jiang, Y. W.; Zhua, Y. X.; Wu, F. G. Multifunctional Quaternized Carbon Dots with Enhanced Biofilm Penetration and Eradication Efficiencies. J. Mater. Chem. B 2019, 7 (33), 5104–5114. https://doi.org/10.1039/C9TB00681H.Search in Google Scholar PubMed
79. Knoblauch, R.; Geddes, C. D. Carbon Nanodots in Photodynamic Antimicrobial Therapy: A Review. Materials 2020, 13 (18), 4004. https://doi.org/10.3390/ma13184004.Search in Google Scholar PubMed PubMed Central
80. Hussen, N. H.; Hasan, A. H.; FaqiKhedr, Y. M.; Bogoyavlenskiy, A.; Bhat, A. R.; Jamalis, J. Carbon Dot Based Carbon Nanoparticles as Potent Antimicrobial, Antiviral, and Anticancer Agents. ACS Omega 2024, 9 (9), 9849–9864. https://doi.org/10.1021/acsomega.3c05537.Search in Google Scholar PubMed PubMed Central
81. Kanwal, A.; Bibi, N.; Hyder, S.; Muhammad, A.; Ren, H.; Liu, J.; Lei, Z. Recent Advances in Green Carbon Dots (2015–2022): Synthesis, Metal Ion Sensing, and Biological Applications. Beilstein J. Nanotechnol. 2022, 13 (1), 1068–1107. https://doi.org/10.3762/bjnano.13.93.Search in Google Scholar PubMed PubMed Central
82. Belal, A.; Almalki, A. H.; Farghali, A. A.; Mahmoud, R.; Atta, R. R.; Allah, A. E.; Hassan, W. H.; Lee, S.; Kotp, A. A.; Essam, D.; Hassan, A. H. E.; Ghoneim, M. M.; El-Ela, F. I. A.; Abdelwahab, A. Nitrogen-doped Carbon Quantum Dots as a Novel Treatment for Black Fungal Bone Infections (Mucormycosis): In Vitro and In Vivo Study. Artif. Cells Nanomed. Biotechnol. 2024, 52 (1), 131–144. https://doi.org/10.1080/21691401.2024.2318212.Search in Google Scholar PubMed
83. Li, P.; Sun, L.; Xue, S.; Qu, D.; An, L.; Wang, X.; Sun, Z. Recent Advances of Carbon Dots as New Antimicrobial Agents. SmartMat 2022, 3 (2), 226–248. https://doi.org/10.1002/smm2.1131.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde