Abstract
With two different Zr content Ti–Zr microalloyed low-carbon steels, isothermal relaxation tests at 875–950 °C were conducted using a Gleeble-3500 thermal simulation testing machine. Based on the Avrami equation, the thermodynamic and kinetic model for the precipitation of
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This work was financially supported by the National Natural Science Foundation of China (no. 51761019) and the Vanadium Titanium Alliance Collaborative Project (2022FTLMXTXM-03).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Zhang, K.; Zhang, T.; Zhang, M.; Chen, Z.; Pan, H.; Yang, G.; Cao, Y.; Li, Z.; Zhang, X. Hot Deformation Behavior, Dynamic Recrystallization Mechanism and Processing Maps of Ti–V Microalloyed High Strength Steel. J. Mater. Res. Technol. 2023, 25, 4201–4215. https://doi.org/10.1016/j.jmrt.2023.06.195.Suche in Google Scholar
2. Fu, Z.; Yang, G.; Mao, X.; Han, R.; Xu, Y.; Xu, D. Microstructure Evolution and Precipitation Behavior of Hot-Rolled High-Strength Ti–Mo–V Micro-alloyed Steel. J. Mater. Res. Technol. 2023, 27, 8132–8142. https://doi.org/10.1016/j.jmrt.2023.11.209.Suche in Google Scholar
3. Nezhad, M. S. A.; Ghazvinian, S.; Amirsalehi, M.; Momeni, A. Design of a Novel HSLA Steel with a Combination of High Strength (140–160 Ksi) and Excellent Toughness. Int. J. Mater. Res. 2021, 112 (10), 800–811. https://doi.org/10.1515/ijmr-2021-8292.Suche in Google Scholar
4. Tian, Y.; Yu, H.; Zhou, T.; Wang, K.; Zhu, Z. Revealing Morphology Rules of MX Precipitates in Ti-V-Nb Multi-Microalloyed Steels. Mater. Charact. 2022, 188, 111919. https://doi.org/10.1016/j.matchar.2022.111919.Suche in Google Scholar
5. Gómez, M.; Medina, S. F. Role of Microalloying Elements in the Microstructure of Hot Rolled Steels. Int. J. Mater. Res. 2011, 102 (10), 1197–1207. https://doi.org/10.3139/146.110585.Suche in Google Scholar
6. Baker, T. N. Microalloyed Steels. Ironmak Steelmak. 2016, 43 (4), 264–307. https://doi.org/10.1179/1743281215Y.0000000063.Suche in Google Scholar
7. Cao, Y.; Wan, X.; Zhou, F.; Shen, Y.; Liu, Y.; Li, G.; Wu, K. Impact of Mo Content on the Microstructure– Toughness Relationship in the Coarse-Grained Heat-Affected Zone of High-Strength Low-Alloy Steels. Int. J. Mater. Res. 2021, 112 (2), 98–107. https://doi.org/10.1515/ijmr-2020-7842.Suche in Google Scholar
8. Wang, S.; Gao, Z.; Wu, G.; Mao, X. Titanium Microalloying of Steel: A Review of its Effects on Processing, Microstructure and Mechanical Properties. Int. J. Min. Met. Mater. 2022, 29 (4), 645–661. https://doi.org/10.1007/s12613-021-2399-7.Suche in Google Scholar
9. Zhang, Q.; Yuan, Q.; Qiao, W.; Chen, G.; Xu, G. Comparison of the Strengthening Effects of Nb, V, and Ti on the Mechanical Properties of 20MnSi Low-Alloy Steel. Int. J. Mater. Res. 2020, 111 (6), 504–510. https://doi.org/10.3139/146.111905.Suche in Google Scholar
10. Zhao, B.; Zhao, T.; Huang, L.; Li, J. Effect of Nitrogen Content on the Static Recrystallization and Precipitation Behaviors of Vanadium–Titanium Microalloyed Steels. Int. J. Mater. Res. 2024, 115 (6), 411–420. https://doi.org/10.1515/ijmr-2023-0122.Suche in Google Scholar
11. Zhang, K.; Sun, X.; Li, Z.; Xu, K.; Jia, T.; Zhu, Z.; Ye, X.; Kang, J.; Yong, Q. Effect of Ti/V Ratio on Thermodynamics and Kinetics of MC in γ/α Matrices of Ti–V Microalloyed Steels. J. Iron Steel Res. Int. 2021, 28 (8), 1019–1029. https://doi.org/10.1007/s42243-020-00539-1.Suche in Google Scholar
12. Li, K.; Shao, J.; Yao, C.; Jia, P.; Xie, S.; Chen, D.; Xiao, M. Effect of Nb-Ti Microalloyed Steel Precipitation Behavior on Hot Rolling Strip Shape and FEM Simulation. Materials 2024, 17 (3), 651. https://doi.org/10.3390/ma17030651.Suche in Google Scholar PubMed PubMed Central
13. Han, R.; Yang, G.; Xu, D.; Jiang, L.; Fu, Z.; Zhao, G. Effect of V on the Precipitation Behavior of Ti−Mo Microalloyed High-Strength Steel. Materials 2022, 15 (17), 5965. https://doi.org/10.3390/ma15175965.Suche in Google Scholar PubMed PubMed Central
14. Liu, W.; Wei, H.; Zhang, K.; Zhang, M.; Li, J.; Zhao, S.; Zhao, P.; Ye, X.; Li, Z.; Ma, Y. Strain-Induced Precipitation Behavior and Microstructure Evolution of Ti-V-Mo Complex Microalloyed Steel. J. Materi. Eng. Perform. 2023. https://doi.org/10.1007/s11665-023-08860-y.Suche in Google Scholar
15. Baker, T. N. Role of Zirconium in Microalloyed Steels: A Review. Mater. Sci. Technol. 2015, 31 (3), 265–294. https://doi.org/10.1179/1743284714Y.0000000549.Suche in Google Scholar
16. Liu, W. J.; Jonas, J. J. A Stress Relaxation Method for Following Carbonitride Precipitation in Austenite at Hot Working Temperatures. Metall. Trans. A 1988, 19 (6), 1403–1413. https://doi.org/10.1007/BF02674014.Suche in Google Scholar
17. Li, X.; Li, H.; Liu, L.; Deng, X.; Wang, Z. The Formation Mechanism of Complex Carbides in Nb-V Microalloyed Steel. Mater. Lett. 2022, 311, 131544. https://doi.org/10.1016/j.matlet.2021.131544.Suche in Google Scholar
18. Yong, Q. L. Secondary Phases In Steel; Metallurgical Industry Press, Beijing, 2006.Suche in Google Scholar
19. Murali, D.; Panigrahi, B. K.; Valsakumar, M. C.; Sundar, C. S. Diffusion of Y and Ti/Zr in Bcc Iron: A First Principles Study. J. Nucl. Mater. 2011, 419 (1), 208–212. https://doi.org/10.1016/j.jnucmat.2011.05.018.Suche in Google Scholar
20. Dutta, B.; Sellars, C. M. Effect of Composition and Process Variables on Nb(C, N) Precipitation in Niobium Microalloyed Austenite. J. Mater. Sci. Technol. 1987, 3 (3), 197–206. https://doi.org/10.1179/mst.1987.3.3.197.Suche in Google Scholar
21. Dutta, B.; Valdes, E.; Sellars, C. M. Mechanism and Kinetics of Strain Induced Precipitation of Nb(C,N) in Austenite. Acta Metall. Mater. 1992, 40 (4), 653–662. https://doi.org/10.1016/0956-7151(92)90006-Z.Suche in Google Scholar
22. Okaguchi, S.; Hashimoto, T. Computer Model for Prediction of Carbonitride Precipitation during Hot Working in Nb-Ti Bearing HSLA Steels. ISIJ Int. 1992, 32 (3), 283–290. https://doi.org/10.2355/isijinternational.32.283.Suche in Google Scholar
23. Speer, J. G.; Michael, J. R.; Hansen, S. S. Carbonitride Precipitation in Niobium/Vanadium Microalloyed Steels. Metall. Trans. A 1987, 18 (2), 211–222. https://doi.org/10.1007/BF02825702.Suche in Google Scholar
24. Zhang, K.; Sun, X. J.; Zhang, Y. M.; Li, Z. D.; Ye, X. Y.; Zhu, Z. H.; Huang, Z. Y.; Yong, Q. L. Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel. Acta Metall. Sin. 2018, 54 (8), 1122–1130. https://doi.org/10.11900/0412.1961.2018.00011.Suche in Google Scholar
25. García-Sesma, L.; López, B.; Pereda, B. Effect of High Ti Contents on Austenite Microstructural Evolution during Hot Deformation in Low Carbon Nb Microalloyed Steels. Metals 2020, 10 (2), 165. https://doi.org/10.3390/met10020165.Suche in Google Scholar
26. Liu, P.; Cao, J.; Yin, S.; Yang, Y.; Gao, P. Effect of Zr on Undissolved Phases and Carbide Precipitation in Ti Microalloyed Low-Carbon Steel. J. Iron Steel Res. Int. 2019, 26 (7), 720–732. https://doi.org/10.1007/s42243-019-00236-8.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Review
- A review on advancement in mechanical and structural properties of graphene reinforced aluminium matrix composites
- Original Papers
- Effect of pH and Yb3+ doping concentration on the structure and upconversion luminescence properties of GdPO4:Er3+,Yb3+
- Fabrication and characterization of reduced graphene oxide on MoS2 film for IR detectors
- Green synthesis of highly luminous lemon juice-based carbon dots for antimicrobial assessment and fingerprint detection
- Cobalt aluminates prepared by ultrasonic-assisted synthesis using different surfactants for Congo red photocatalytic degradation
- Molecular dynamics study of the dissolution of crystalline and amorphous nickel nanoparticles in aluminium
- Effect of Zr content on strain-induced precipitation behavior of Ti–Zr microalloyed low-carbon steel
- On 2-stage martensitic transformation behavior in aged Ti50.5Ni33.5Cu11.5Pd4.5 alloys with near-zero thermal hysteresis
- Microstructure, XRD characteristics and tribological behavior of SiC–graphite reinforced Cu-matrix hybrid composites
- News
- DGM – Deutsche Gesellschaft für Materialkunde