Startseite Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of laser power on microstructure and tribological behavior of laser clad NiCr coating

  • Sun Chengwen , Li Wei und Kong Dejun ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

NiCr coatings were prepared on H13 steel by laser cladding with different laser power. The microstructure and phases of the obtained coatings were analyzed using a super depth of field microscope and X-ray diffraction, respectively, and the effect of laser power on the friction–wear performance at high-temperature was investigated using a friction tester. The results show that the laser clad NiCr coatings fabricated at the different laser powers are composed of Cr2Ni3 and FeNi3 phases, and the porosity is decreased from 1.28 % to 0.48 % with the increase of laser power. The average coefficients of friction of NiCr coatings are decreased with the increase of laser power, and the wear rate of NiCr coating fabricated at the laser power of 1400 W power is the lowest among the three kinds of coatings, showing that the suitable laser power can improve the surface quality and wear resistance of NiCr coating.


Corresponding author: Kong Dejun, School of Mechanical Engineering, Changzhou University, Changzhou 213164, P.R. China, E-mail:

References

1. Karmakar, D. P., Muvvala, G., Nath, A. K. High–temperature abrasive wear characteristics of H13 steel modified by laser remelting and cladded with Stellite 6 and Stellite 6/30% WC. Surf. Coat. Technol. 2021, 422, 127498. https://doi.org/10.1016/j.surfcoat.2021.127498.Suche in Google Scholar

2. Yan, Q., Yang, K., Wang, Z. D., Chen, M. Z., Sun, G. F., Ni, Z. H. Surface roughness optimization and high–temperature wear performance of H13 coating fabricated by extreme high–speed laser cladding. Opt. Laser. Technol. 2022, 149, 107823. https://doi.org/10.1016/j.optlastec.2021.107823.Suche in Google Scholar

3. Chen, H., Lu, Y. Y., Sun, Y. S., Wei, Y. F., Wang, X. Y., Liu, D. J. Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding. Surf. Coat. Technol. 2020, 395, 125867. https://doi.org/10.1016/j.surfcoat.2020.125867.Suche in Google Scholar

4. Lizzul, L., Sorgato, M., Bertolini, R., Ghiotti, A., Bruschi, S., Fabbro, F., Rech, S. On the influence of laser cladding parameters and number of deposited layers on as-built and machined AISI H13 tool steel multilayered claddings. CIRP J. Manuf. Sci. Technol. 2021, 35, 361–370. https://doi.org/10.1016/j.cirpj.2021.07.003.Suche in Google Scholar

5. Chen, R. C., Wang, Z. G., Qi, L., Zhong, L. Q., Guan, R. G., He, J. G., Hu, X. Q. The carbides, tensile properties, and work–hardening behavior of annealed H13 die steels with varied yttrium contents. Mater. Sci. Eng., A 2021, 806, 140856. https://doi.org/10.1016/j.msea.2021.140856.Suche in Google Scholar

6. Qi, K., Yang, Y., Liang, W. X., Jin, K., Xiong, L. Influence of the anomalous elastic modulus on the crack sensitivity and wear properties of laser cladding under the effects of a magnetic field and Cr addition. Surf. Coat. Technol. 2021, 423, 127575. https://doi.org/10.1016/j.surfcoat.2021.127575.Suche in Google Scholar

7. Zhang, H., Pan, Y. J., Zhang, Y., Lian, G. F., Cao, Q., Yang, J. H. Influence of laser power on the microstructure and properties of in–situ NbC/WCoB–TiC coating by laser cladding. Mater. Chem. Phys. 2022, 290, 126636. https://doi.org/10.1016/j.matchemphys.2022.126636.Suche in Google Scholar

8. Yang, Y., Wang, A. H., Xiong, D. H., Wang, Z. W., Zhou, D., Li, S. Q., Zhang, H. Effect of Cr content on microstructure and oxidation resistance of laser–clad Cu–Ni–Fe–Mo–xCr alloy coating. Surf. Coat. Technol. 2020, 384, 125316. https://doi.org/10.1016/j.surfcoat.2019.125316.Suche in Google Scholar

9. Wu, S., Liu, Z. H., Huang, X. F., Wu, Y. F., Gong, Y. Process parameter optimization and EBSD analysis of Ni60A–25% WC laser cladding. Int. J. Refract. Metals Hard Mater. 2021, 101, 105675. https://doi.org/10.1016/j.ijrmhm.2021.105675.Suche in Google Scholar

10. Singh, S., Goyal, D. K., Kumar, P., Bansal, A. Influence of laser cladding parameters on slurry erosion performance of NiCrSiBC+50WC claddings. Int. J. Refract. Metals Hard Mater. 2022, 105, 105825. https://doi.org/10.1016/j.ijrmhm.2022.105825.Suche in Google Scholar

11. Chen, T., Wu, W. N., Li, W. P., Liu, D. F. Laser cladding of nanoparticle TiC ceramic powder: effects of process parameters on the quality characteristics of the coatings and its prediction model. Opt. Laser. Technol. 2019, 116, 345–355. https://doi.org/10.1016/j.optlastec.2019.03.048.Suche in Google Scholar

12. Nie, M. H., Zhang, S., Wang, Z. Y., Zhang, C. H., Chen, H. T., Chen, J. Effect of laser power on microstructure and interfacial bonding strength of laser cladding 17–4PH stainless steel coatings. Mater. Chem. Phys. 2022, 275, 125236. https://doi.org/10.1016/j.matchemphys.2021.125236.Suche in Google Scholar

13. Ma, M. M., Wang, Z. M., Zeng, X. Y. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Mater. Sci. Eng., A 2017, 685, 265–273. https://doi.org/10.1016/j.msea.2016.12.112.Suche in Google Scholar

14. Gu, D. D., Hagedorn, Y. C., Meiners, W., Meng, G. B., Batista, R. J. S., Wissenbach, K., Poprawe, R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012, 60, 3849–3860. https://doi.org/10.1016/j.actamat.2012.04.006.Suche in Google Scholar

15. Miranda, G., Faria, S., Bartolomeu, F., Pinto, E., Alves, N., Peixinho, N., Gasik, M., Silva, F. S. A study on the production of thin–walled Ti6Al4V parts by selective laser melting. J. Manuf. Process. 2019, 39, 346–355. https://doi.org/10.1016/j.jmapro.2018.12.036.Suche in Google Scholar

16. Wu, C. L., Zhang, S., Zhang, C. H., Zhang, H., Dong, S. Y. Phase evolution and properties in laser surface alloying of FeCoCrAlCuNix high–entropy alloy on copper substrate. Surf. Coat. Technol. 2017, 315, 368–376. https://doi.org/10.1016/j.surfcoat.2017.02.068.Suche in Google Scholar

17. Yin, T. Y., Zhang, S., Wang, Z. Y., Zhang, C. H., Liu, Y., Chen, J. Effect of laser energy density on microstructural evolution and wear resistance of modified aluminum bronze coatings fabricated by laser cladding. Mater. Chem. Phys. 2022, 285, 126191. https://doi.org/10.1016/j.matchemphys.2022.126191.Suche in Google Scholar

18. Zhang, Y. H., Liu, Y., Wang, J. K., Hu, D. W., Li, J. J. Microstructure and wear resistance of direct laser–deposited TiC–enhanced aluminum–based composite coating for brake discs. Surf. Coat. Technol. 2023, 455, 129193. https://doi.org/10.1016/j.surfcoat.2022.129193.Suche in Google Scholar

19. Kong, W. C., Yu, Z., Hu, J. Electrochemical performance and corrosion mechanism of Cr–DLC coating on nitrided Ti6Al4V alloy by magnetron sputtering. Diamond Relat. Mater. 2021, 116, 108398. https://doi.org/10.1016/j.diamond.2021.108398.Suche in Google Scholar

20. Zhan, X. H., Qi, C. Q., Gao, Z. N., Tian, D. Y., Wang, Z. D. The influence of heat input on microstructure and porosity during laser cladding of Invar alloy. Opt. Laser. Technol. 2019, 113, 453–461. https://doi.org/10.1016/j.optlastec.2019.01.015.Suche in Google Scholar

21. Wan, L., Cheng, M. Y., Fu, G. Y., Wei, C., Shi, T., Shi, S. H. Annular laser cladding of CuPb10Sn10 copper alloy for high–quality anti–friction coating on 42CrMo steel surface. Opt. Laser. Technol. 2023, 158, 108878. https://doi.org/10.1016/j.optlastec.2022.108878.Suche in Google Scholar

22. Jing, P. Y., Wang, H. J., Chen, W. G., Chen, L., Yin, H. Z., Wu, H. J., Li, D. Y. Effect of Ti addition on microstructure and tribological properties nof laser cladding Ni35/WC coating in an oxygen–free environment. Surf. Coat. Technol. 2022, 440, 128480. https://doi.org/10.1016/j.surfcoat.2022.128480.Suche in Google Scholar

23. Deng, D. W., Li, T. S., Huang, Z. Y., Jiang, H., Yang, S. H., Zhang, Y. Multi–response optimization of laser cladding for TiC particle reinforced Fe matrix composite based on Taguchi method and grey relational analysis. Opt. Laser. Technol. 2022, 153, 108259. https://doi.org/10.1016/j.optlastec.2022.108259.Suche in Google Scholar

24. Saeedi, R., Razavi, R. S., Bakhshi, S. R., Erfanmanesh, M., Bani, A. A. Optimization and characterization of laser cladding of NiCr and NiCr–TiC composite coatings on AISI 420 stainless steel. Ceram. Int. 2021, 47, 4097–4110. https://doi.org/10.1016/j.ceramint.2020.09.284.Suche in Google Scholar

25. Li, W., Liu, J., Zhou, Y., Li, S., Wen, S. F., Wei, Q. S., Yan, C. Z., Shi, Y. S. Effect of laser scanning speed on a Ti–45Al–2Cr–5Nb alloy processed by selective laser melting: microstructure, phase and mechanical properties. J. Alloys Compd. 2016, 688, 626–636. https://doi.org/10.1016/j.jallcom.2016.07.206.Suche in Google Scholar

26. Zhang, L., Wang, C. S., Han, L. Y., Dong, C. Influence of laser power on microstructure and properties of laser clad Co–based amorphous composite coatings. Surface. Interfac. 2017, 6, 18–23. https://doi.org/10.1016/j.surfin.2016.11.006.Suche in Google Scholar

27. Kong, W. C., Yu, Z., Hu, J. Effect of carburizing treatment on microstructural, mechanical and tribological performances of Cr doped DLC coating deposited on Ti6Al4V alloy. Ceram. Int. 2021, 47, 34425–34436. https://doi.org/10.1016/j.ceramint.2021.08.355.Suche in Google Scholar

28. Xu, T. Z., Zhang, S., Wang, Z. Y., Zhang, C. H., Zhang, D. X., Wang, M., Wu, C. L. Wear behavior of graphite self–lubricating babbitt alloy composite coating on 20 steel prepared by laser cladding. Eng. Fail. Anal. 2022, 141, 106698. https://doi.org/10.1016/j.engfailanal.2022.106698.Suche in Google Scholar

29. Jiang, D., Cui, H. Z., Zhao, X. F., Chen, H., Ma, G. L., Song, X. J. Synergistic improvement of wear and corrosion resistance of CoCrNiMoCB coatings obtained by laser cladding: role of Mo concentration. Mater. Des. 2022, 219, 110751. https://doi.org/10.1016/j.matdes.2022.110751.Suche in Google Scholar

30. Shan, M. L., Zhang, C. Z., Wang, N., Zhang, L. J., Li, W. S., Yin, X. S. Improvement in wear resistance of laser–clad Fe–Cr–Mo–B–C–(TiC) amorphous–nanocrystalline coating. Vacuum 2023, 207, 111676. https://doi.org/10.1016/j.vacuum.2022.111676.Suche in Google Scholar

31. Zhang, Y. Q., Guo, J., Xu, G. D., Li, Z. Y., Wei, S. Z. Effect of Nd2O3 on microstructure, corrosion and wear properties of laser cladding Zr–based amorphous composite coatings on AZ91D magnesium alloy. Appl. Surf. Sci. 2023, 611, 155587. https://doi.org/10.1016/j.apsusc.2022.155587.Suche in Google Scholar

32. Cao, Q. Z., Fan, L., Chen, H. Y., Hou, Y., Dong, L. H., Ni, Z. W. Wear behavior of laser cladded WC–reinforced Ni–based coatings under low temperature. Tribol. Int. 2022, 176, 107939. https://doi.org/10.1016/j.triboint.2022.107939.Suche in Google Scholar

Received: 2022-12-15
Accepted: 2023-03-29
Published Online: 2023-11-09
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0498/pdf?lang=de
Button zum nach oben scrollen