Startseite The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications

  • Walid Kamal Abdelbasset ORCID logo EMAIL logo , Saade Abdalkareem Jasim , Azher M. Abed , Usama S. Altimari , Marwa M. Eid , Yasir Salam Karim , Safaa M. Elkholi , Yasser Fakri Mustafa und Abduladheem Turki Jalil
Veröffentlicht/Copyright: 5. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In today’s world, wound healing is a growing serious problem for clinical institutes. In this study, nanofibrous scaffolds were prepared using polyurethane as a mat scaffold. Also, by immersing curcumin as an antibacterial component another scaffold was fabricated using the electrospinning technique. The obtained scaffolds were characterized by means of scanning electron microscopy, tensile analysis, porosity, and water vapor transmission rate. MTT and DAPI staining were used to prove the biocompatibility and cell attachment of the nanofibers. The curcumin incorporated into the PU scaffold can stop both the Gram-negative and Gram-positive bacteria activities through direct contact with them. Studies showed that the PU/Curcumin scaffold has considerable ability to play a key role in wound healing applications.


Corresponding author: Walid Kamal Abdelbasset, Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, P.O. Box. 173, Al-Kharj 11942, Saudi Arabia; and Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza 12613, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R145), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Competing interest: The authors declare that there is no conflict of interest.

References

1. Pankongadisak, P., Sangklin, S., Chuysinuan, P., Suwantong, O., Supaphol, P. The use of electrospun curcumin-loaded poly(L-lactic acid) fiber mats as wound dressing materials. J. Drug Deliv. Sci. Technol. 2019, 53, 101121. https://doi.org/10.1016/j.jddst.2019.06.018.Suche in Google Scholar

2. Jiang, T., Ghosh, R., Charcosset, C. In vitro anti-inflammatory activity of silymarin/hydroxyapatite/chitosan nanocomposites and its cytotoxic effect using brine shrimp lethality assay. J. Popul. Ther. Clin. Pharmacol. 2021, 112, 419–430. https://doi.org/10.1016/j.tifs.2021.04.015.Suche in Google Scholar

3. Esmaeili, E., Eslami-Arshaghi, T., Hosseinzadeh, S., Elahirad, E., Jamalpoor, Z., Hatamie, S., Soleimani, M. The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: antimicrobial performance and cutaneous wound healing. Int. J. Biol. Macromol. 2020, 152, 418–427. https://doi.org/10.1016/j.ijbiomac.2020.02.295.Suche in Google Scholar PubMed

4. Thu, H.-E., Zulfakar, M. H., Ng, S.-F. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int. J. Pharm. 2012, 434, 375–383. https://doi.org/10.1016/j.ijpharm.2012.05.044.Suche in Google Scholar PubMed

5. Percival, N. J. Classification of wounds and their management. Surgery 2002, 20, 114–117. https://doi.org/10.1383/surg.20.5.114.14626.Suche in Google Scholar

6. Thangapazham, R. L., Sharad, S., Maheshwari, R. K. Skin regenerative potentials of curcumin. Biofactors 2013, 39, 141–149. https://doi.org/10.1002/biof.1078.Suche in Google Scholar PubMed

7. Kuznetsova, O. Y., Kharitonova, M. A. Efficiency of healing of wounds of abscesses and phlegmons of the submandillar triangle. Eurasian Chem. Commun. 2020, 2, 1228–1232. https://doi.org/10.22034/ecc.2020.121753.Suche in Google Scholar

8. Boateng, J., Catanzano, O. Advanced therapeutic dressings for effective wound healing - a review. J. Pharmaceut. Sci. 2015, 104, 3653–3680. https://doi.org/10.1002/jps.24610.Suche in Google Scholar PubMed

9. Shetty, S., Sharma, M., Kabekkodu, S., Anil Kumar, N., Satyamoorthy, K., Radhakrishnan, R. Understanding the molecular mechanism associated with reversal of oral submucous fibrosis targeting hydroxylysine aldehyde-derived collagen cross-links. J. Carcinog. 2021, 20, 9. https://doi.org/10.4103/jcar.JCar_24_20.Suche in Google Scholar PubMed PubMed Central

10. Boateng, J. S., Matthews, K. H., Stevens, H. N. E., Eccleston, G. M. Wound healing dressings and drug delivery systems: a review. J. Pharmaceut. Sci. 2008, 97, 2892–2923. https://doi.org/10.1002/jps.21210.Suche in Google Scholar PubMed

11. A review: emerging trends in bionanocomposites. Int. J. Pharm. Res. Technol. 2021, 11, 1–8. https://doi.org/10.31838/ijprt/11.01.01.Suche in Google Scholar

12. Sabet, M., Salavati-Niasari, M., Esmaeili, E. Synthesis of zinc sulfide nanostructures with different sulfur sources via mild hydrothermal route: investigation of crystal phase and morphology. J. Inorg. Organomet. Polym. Mater. 2016, 26, 738–743. https://doi.org/10.1007/s10904-016-0374-y.Suche in Google Scholar

13. Esmaeili, E., Sabet, M., Salavati-Niasari, M., Zarghami, Z., Bagheri, S. Effect of sulfur source on cadmium sulfide nanostructures morphologies via simple hydrothermal route. J. Cluster Sci. 2016, 27, 351–360. https://doi.org/10.1007/s10876-015-0934-2.Suche in Google Scholar

14. Hosseinzadeh, S., Hamedi, S., Esmaeili, E., Kabiri, M., Babaie, A., Soleimani, M., Ardeshirylajimi, A. Mucoadhesive nanofibrous membrane with anti-inflammatory activity. Polym. Bull. 2018, 76, 4827–4840. https://doi.org/10.1007/s00289-018-2618-1.Suche in Google Scholar

15. Naureen, B., Haseeb, A. S. M. A., Basirun, W. J., Muhamad, F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Mater. Sci. Eng. C 2021, 118, 111228. https://doi.org/10.1016/j.msec.2020.111228.Suche in Google Scholar PubMed

16. Mighani, H., Sajadinia, S. M., Nasr-Isfahani, H., Bakherad, M. Synthesis of new polyurethanes based on 2, 3-Dihidro-1, 4-Phthalazinedione. Adv. J. Chem. A 2021, 4, 300–307.Suche in Google Scholar

17. Mogoşanu, G. D., Grumezescu, A. M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 2014, 463, 127–136. https://doi.org/10.1016/j.ijpharm.2013.12.015.Suche in Google Scholar PubMed

18. Solanki, A., Das, M., Thakore, S. A review on carbohydrate embedded polyurethanes: an emerging area in the scope of biomedical applications. Carbohydr. Polym. 2018, 181, 1003–1016. https://doi.org/10.1016/j.carbpol.2017.11.049.Suche in Google Scholar PubMed

19. Bahrami, S., Solouk, A., Mirzadeh, H., Seifalian, A. M. Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Compos. B Eng. 2019, 168, 421–431. https://doi.org/10.1016/j.compositesb.2019.03.044.Suche in Google Scholar

20. Ambarak, M., Asweisi, A. Determination of selenium in biological samples by flame atomic absorption spectrometry after preconcentration on modified polyurethane foam. Adv. J. Chem. Sect. B. 2020, 2, 10–17. https://doi.org/10.33945/SAMI/AJCB.2020.1.3.Suche in Google Scholar

21. Jiang, T., Ghosh, R., Charcosset, C. Extraction, purification and applications of curcumin from plant materials-A comprehensive review. Trends Food Sci. Technol. 2021, 112, 419–430. https://doi.org/10.1016/j.tifs.2021.04.015.Suche in Google Scholar

22. Ahmed Ismail, K., El Askary, A., Farea, M. O., Awwad, N. S., Ibrahium, H. A., Eid Moustapha, M., Menazea, A. A. Perspectives on composite films of chitosan-based natural products (Ginger, Curcumin, and Cinnamon) as biomaterials for wound dressing. Arab. J. Chem. 2022, 15, 103716. https://doi.org/10.1016/j.arabjc.2022.103716.Suche in Google Scholar

23. Zou, Y., Wang, P., Zhang, A., Qin, Z., Li, Y., Xianyu, Y., Zhang, H. Covalent organic framework-incorporated nanofibrous membrane as an intelligent platform for wound dressing. ACS Appl. Mater. Interfaces 2022, 14, 8680–8692. https://doi.org/10.1021/acsami.1c19754.Suche in Google Scholar PubMed

24. Bello, M., Abdullah, F., Rahim Mohd Yusoff, A., Mohd Asyraf Wan Mahmood, W., Yong Chee, T., Ahmad Nizam Nik Malek, N., Binti Jemon, K., Sathishkumar, P. Curcumin-loaded electrospun poly(ɛ-caprolactone) nanofibrous membrane: an efficient and biocompatible wound-dressing material. Mater. Lett. 2022, 315, 131910. https://doi.org/10.1016/j.matlet.2022.131910.Suche in Google Scholar

25. Khalili, M., Khalili, A., Bokov, D. O., Golmirzaei, M., Oleneva, M. S., Naghiaei, N., Radmehr, M., Esmaeili, E. Preparation and characterization of bi-layered polycaprolactone/polyurethane nanofibrous scaffold loaded with titanium oxide and curcumin for wound dressing applications. Appl. Phys. A 2022, 128, 497. https://doi.org/10.1007/s00339-022-05646-2.Suche in Google Scholar

26. Tsai, K.-D., Lin, J.-C., Yang, S., Tseng, M.-J., Hsu, J.-D., Lee, Y.-J., Cherng, J.-M. Curcumin protects against UVB-induced skin cancers in SKH-1 hairless mouse: analysis of early molecular markers in carcinogenesis, evidence-based complement. Alternative Med. 2012, 2012, 1–11. https://doi.org/10.1155/2012/593952.Suche in Google Scholar PubMed PubMed Central

27. Shefa, A. A., Sultana, T., Park, M. K., Lee, S. Y., Gwon, J. G., Lee, B. T. Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater. Des. 2020, 186, 108313. https://doi.org/10.1016/j.matdes.2019.108313.Suche in Google Scholar

28. Sidhu, G. S., Singh, A. K., Thaloor, D., Banaudha, K. K., Patnaik, G. K., Srimal, R. C., Maheshwari, R. K. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998, 6, 167–177. https://doi.org/10.1046/j.1524-475X.1998.60211.x.Suche in Google Scholar

29. Netam, A., Bhargava, V., Singh, R., Sharma, P. Physico-chemical characterization of ayurvedic swarna bhasma by using SEM, EDAX, XRD and PSA. J. Complement. Med. Res. 2021, 12, 204. https://doi.org/10.5455/jcmr.2021.12.02.23.Suche in Google Scholar

30. Datkhile, K. D., Patil, S. R., Patil, M. N., Pratik, P. Studies on phytoconstituents, in vitro Antioxidant, Antibacterial, and cytotoxicity potential of Argemone Mexicana linn (Family: Papaveraceae). J. Nat. Sci. Biol. Med. 2020, 198–205.Suche in Google Scholar

31. Jain, S., Krishna Meka, S. R., Chatterjee, K. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed. Mater. 2016, 11, 055007. https://doi.org/10.1088/1748-6041/11/5/055007.Suche in Google Scholar PubMed

32. Mikos, A., Temenoff, J. Formation of highly porous biodegradable scaffolds for tissue engineering, Form. Highly Porous Biodegrad. Scaffolds Tissue Eng. 2000, 3, 23–24. https://doi.org/10.4067/S0717-34582000000200003.Suche in Google Scholar

33. Dasgupta, N., Ranjan, S. Food Engineering for Developing Food-Grade Nanoemulsions; Springer Nature Singapore Pte Ltd: Singapore, 2018; pp. 83–103.10.1007/978-981-10-6986-4_5Suche in Google Scholar

34. Subtaweesin, C., Woraharn, W., Taokaew, S., Chiaoprakobkij, N., Sereemaspun, A., Phisalaphong, M. Characteristics of curcumin-loaded bacterial cellulose films and anticancer properties against malignant melanoma skin cancer cells. Appl. Sci. 2018, 8, 1188. https://doi.org/10.3390/app8071188.Suche in Google Scholar

35. Farid, M., Purniawan, A., Rasyida, A., Ramadhani, M., Komariyah, S. Improvement of acoustical characteristics : wideband bamboo based polymer composite. IOP Conf. Ser. Mater. Sci. Eng. 2017, 223, 012021. https://doi.org/10.1088/1757-899X/223/1/012021.Suche in Google Scholar

36. Trovati, G., Sanches, E. A., Neto, S. C., Mascarenhas, Y. P., Chierice, G. O. Characterization of polyurethane resins by FTIR, TGA, and XRD. J. Appl. Polym. Sci. 2010, 115, 263–268. https://doi.org/10.1002/app.31096.Suche in Google Scholar

37. Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. B Rev. 2010, 16, 371–383. https://doi.org/10.1089/ten.teb.2009.0639.Suche in Google Scholar PubMed PubMed Central

38. Yuan, T. T., DiGeorge Foushee, A. M., Johnson, M. C., Jockheck-Clark, A. R., Stahl, J. M. Development of electrospun chitosan-polyethylene oxide/fibrinogen biocomposite for potential wound healing applications. Nanoscale Res. Lett. 2018, 13, 88. https://doi.org/10.1186/s11671-018-2491-8.Suche in Google Scholar PubMed PubMed Central

39. Miguel, S., Ribeiro, M., Coutinho, P., Correia, I. Electrospun polycaprolactone/aloe Vera_Chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers 2017, 9, 183. https://doi.org/10.3390/polym9050183.Suche in Google Scholar PubMed PubMed Central

40. Rezk, A. I., Lee, J. Y., Son, B. C., Park, C. H., Kim, C. S. Bi-layered nanofibers membrane loaded with titanium oxide and tetracycline as controlled drug delivery system for wound dressing applications. Polymers 2019, 11. https://doi.org/10.3390/polym11101602.Suche in Google Scholar PubMed PubMed Central

Received: 2022-06-12
Accepted: 2022-09-25
Published Online: 2023-04-05
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0279/html
Button zum nach oben scrollen