Home NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor
Article
Licensed
Unlicensed Requires Authentication

NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor

  • Meenatchi G K and Velraj G ORCID logo EMAIL logo
Published/Copyright: May 23, 2023
Become an author with De Gruyter Brill

Abstract

The present research paper reports the structural, morphological and electrochemical properties of cerium oxide doped polythiophene nanocomposite. Polythiophene was first polymerized using the chemical oxidation polymerization method and further, it was mixed with an equal amount of cerium oxide (CeO2) nanoparticles by mechanical mixing. The initially generated polythiophene sample exhibited an amorphous character according to X-ray diffraction investigation, however the PTh–nCeO2 polymer nanocomposite displayed good crystallinity. The vibration bands of the PTh and PTh–nCeO2 polymer nanocomposites were further examined using Fourier-transform infrared spectroscopic studies. The morphology and elemental composition of the prepared samples were investigated using scanning electron microscope and energy dispersive X-ray analysis. The electrochemical performance of PTh and PTh–nCeO2 polymer nanocomposite was studied by cyclic voltammetry, Galvanostatic charge–discharge and electrochemical impedance spectroscopy measurements. The PTh–nCeO2 polymer nanocomposites demonstrated a high specific capacitance of 161 F g−1 at a current density of 1 A g−1 among the produced samples. The Nyquist plot (low-frequency area) and Bode plot (phase angle) electrochemical impedance tests revealed excellent capacitive performance. The PTh–nCeO2 polymer nanocomposites may be a good option for high-performance super capacitors, according to the findings.


Corresponding author: Velraj G, Department of Physics, CEG Campus, Anna University, Chennai 600025, Tamilnadu, India, E-mail:

  1. Author contributions: All these works are done by G.K. Meenatchi under the guidance of Dr. G. Velraj.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no competing interests.

  4. Data availability statements: The data supporting the findings of this study are available from the corresponding author upon interest.

References

1. Javadi, A., Najjar, W., Bahadori, S., Vatanpour, V., Malek, A., Abouzari-Lotf, E., Shockravi, A. RSC Adv. 2015, 5, 91670–91682. https://doi.org/10.1039/c5ra18898a.Search in Google Scholar

2. Fukuzaki, N., Higashihara, T., Ando, S., Ueda, M. Macromolecules 2010, 43, 1836–1843. https://doi.org/10.1021/ma902013y.Search in Google Scholar

3. Javadi, A., Shockravi, A., Rafieimanesh, A., Malek, A., Ando, S. Polym. Int. 2015, 64, 486–495. https://doi.org/10.1016/j.eurpolymj.2015.02.032.Search in Google Scholar

4. Liu, J. G., Nakamura, Y., Terraza, C. A., Shibasaki, Y., Ando, S., Ueda, S. M. Macromolecules 2008, 209, 195–203. https://doi.org/10.1002/macp.200700305.Search in Google Scholar

5. Javadi, A., Shockravi, A., Koohgard, M., Malek, A., Shourkaei, F. A., Ando, S. Eur. Polym. J. 2015, 66, 328–341. https://doi.org/10.1016/j.eurpolymj.2015.02.032.Search in Google Scholar

6. Wan, M. Conducting Polymers with Micro or Nanometer Structure; Tsinghua University Press: Beijing, 2008.Search in Google Scholar

7. Laforgue, A., Simon, P., Sarrazin, C., Fauvarque, J. Power Sources 1999, 80, 142–148. https://doi.org/10.1016/S0378-7753(98)00258-4.Search in Google Scholar

8. Gnanakan, S. R. P., Rajasekhar, M., Subramania, A. Int. J. Electrochem. Sci. 2009, 4, 1289–1301.10.1016/S1452-3981(23)15222-9Search in Google Scholar

9. Pascariu, P., Vernardou, D., Suchea, M. P., Airinei, A., Ursu, L., Bucur, S., Tudose, I. V., Ionescu, O. N., Koudoumas, E. Mater. Des. 2019, 182, 108027. https://doi.org/10.1016/j.matdes.2019.108027.Search in Google Scholar

10. Lei, Y., Qiu, Z., Tan, N., Du, H., Li, D., Liu, J., Liu, T., Zhang, W., Chang, X. Prog. Org. Coat. 2020, 139, 105430. https://doi.org/10.1016/j.porgcoat.2019.105430.Search in Google Scholar

11. Sindhu, V., Vidya, J. Int. J. Photon. Opt. Technol. 2018, 4, 25–30. https://doi.org/10.1016/j.matchemphys.2005.01.033.Search in Google Scholar

12. He, Y. Mater. Chem. Phys. 2005, 92, 134. https://doi.org/10.1016/j.matchemphys.2005.01.033.Search in Google Scholar

13. Parvatikar, N., Jain, S., Bhoraskar, S. V., Ambika Prasad, M. V. N. J. Appl. Polym. Sci. 2006, 102, 5533. https://doi.org/10.1002/app.24636.Search in Google Scholar

14. Anees, A., Ansari1, M., Khan, A. M., Khan, M. N., Alrokayan, S. A., Alhoshan, M., Alsalhi, S. J. Semiconduct. 2011, 33, 042002. https://doi.org/10.1088/1674-4926/33/4/042002.Search in Google Scholar

15. Feng, J. K., Cao, Y. L., Ai, X. P., Yang, H. X. J. Power Sources 2008, 177, 199. https://doi.org/10.1016/j.jpowsour.2007.10.086.Search in Google Scholar

16. Murugavel, S., Malathi, M. Int. J. Chem. Sci. 2016, 14, 363–371.Search in Google Scholar

17. Sowmiya, G., Velraj, G. J. Mater. Sci. Mater. Electron. 2020, 31, 14287–14294. https://doi.org/10.1007/s10854-020-03985-5.Search in Google Scholar

18. Nemade, K. R., Waghuley, S. A. Asian J. Chem. 2012, 24, 5947–5948.Search in Google Scholar

19. Kausar, A. Int. J. Compos. Mater. 2016, 6, 43–47. https://doi.org/10.5923/j.cmaterials.20160602.01.Search in Google Scholar

20. Culica, M. E., Scutaru, A. L. C., Melinte, V., Coseri, S., Coseri, S. Materials 2020, 13, 2955. https://doi.org/10.3390/ma13132955.Search in Google Scholar PubMed PubMed Central

21. Wu, N. C., Shi, E. W., Zheng, Y. Q., Li, W. J. J. Am. Ceram. Soc. 2002, 85, 2462–2468. https://doi.org/10.1111/j.1151-2916.2002.Tb00481.x.Search in Google Scholar

22. Ahangar, H. A., Kaushal, A., Zakaria1, A., Zamiri, G., Tobaldi, D. J., Ferreira, J. M. F. PLoS One 2015, 24, 1–11. https://doi.org/10.1371/journal.pone.0122989.Search in Google Scholar PubMed PubMed Central

23. Mokkelbost, T., Kaus, I., Grande, T., Einarsrud, M. A. Chem. Mater. 2004, 16, 5489–5494. https://doi.org/10.1021/cm048583p.Search in Google Scholar

24. Wu, N. C., Shi, E. W., Zheng, Y. Q., Li, W. J. J. Am. Ceram. Soc. 2002, 85, 2462–2468. https://doi.org/10.1111/j.1151-2916.2002.Search in Google Scholar

25. Mangalam, D., Prabaharana, D. M., Sadaiyandi, K., Mahendran, M., Sagadevan, S. Mater. Res. 2016, 19, 478–482. https://doi.org/10.1590/1980-5373-MR-2015-0698.Search in Google Scholar

26. Ashwini, I. S., Pattar, J., Anjaneyulu, P., PrakashBabu, D., Sreekanth, R., Manohara, S. R., Nagaraj, M. Synth. Met. 2020, 270, 116588. https://doi.org/10.1016/j.synthmet.2020.116588.Search in Google Scholar

27. Ghanbary, F., Jafarnejad, E. Inorg. Nano-Met. Chem. 2017, 47, 1675–1681. https://doi.org/10.1080/24701556.2017.1357598.Search in Google Scholar

28. Anjaneyulu, P., PrakashBabu, D., Sreekanth, R., Manohara, S. R., Nagaraja, M. Synth. Met. 2020, 270, 116588. https://doi.org/10.1016/j.synthmet.2020.116588.Search in Google Scholar

29. Elango, M., Deepa, M., Subramanian, R., Saraswathy, G., Elango, M. Mater. Today Proc. 2020, 26, 3544–3551. https://doi.org/10.1016/j.matpr.2019.07.246.Search in Google Scholar

30. Dutta, D., Mukherjee, R. Roy. Soc. Chem. 2016, 45, 14352–14362.10.1039/C6DT03032GSearch in Google Scholar PubMed

31. Farahmandjou, M., Zarinkamar, M., Firoozabadi, T. P. Rev. Mex. Fis. 2016, 62, 496–499. https://doi.org/10.1016/j.electacta.2017.11.008.Search in Google Scholar

32. Tripathi, A., Sheo, K., Bahadur, I., Shukla, R. K. J. Mater. Sci. Mater. Electron. 2015, 26, 7421–7430. https://doi.org/10.1007/s10854-015-3373-9.Search in Google Scholar

33. Wadatkar, N. S., Waghuley, S. A. Macromol. Symp. 2016, 362, 129–131. https://doi.org/10.1002/masy.201400263.Search in Google Scholar

34. Kattimani, J., Sankarappa, T., Praveenkumar, K., Ashwajeet, J. S., Ramanna, R., Chandraprabha, G. B., Sujatha, T. Int. J. Adv. Res. Phys. Sci. 2014, 7, 17–21.Search in Google Scholar

35. Khadar, Y. A. S., Balamuruganb, A., Devarajana, V. P., Subramanian, R., Kumar, S. D. J. Mater. Res. Technol. 2019, 8, 267–274. https://doi.org/10.1016/j.jmrt.2017.12.005.Search in Google Scholar

36. Raji, R. K., Ramachandran, T., Muralidharan, M., Suriakarthick, R., Dhilip, M., Hamed, F., Kurapati, V. Int. J. Mater. Res. 2020, 112, 753–765. https://doi.org/10.21203/rs.3.rs-44211/v1.Search in Google Scholar

37. Tholkappiyan, R., Thiemann, T., Hamed, F. Mater. Chem. Phys. 2020, 240, 122138. https://doi.org/10.1016/j.matchemphys.2019.122138.Search in Google Scholar

38. Anitha, R., Kumar, E., Velladurai, S. C. Asian J. Chem. 2019, 31, 1158–1162. https://doi.org/10.14233/ajchem.2019.21910.Search in Google Scholar

39. Shirbhate1, P. D., Pakade, S. V., Yawale, S. P. Trans. Indian Inst. Met. 2016, 69, 669–672. https://doi.org/10.1007/s12666-015-0537-5.Search in Google Scholar

40. Tholkappiyan, R., Vishista, K. Int. J. Mater. Res. 2015, 106, 127–136. https://doi.org/10.3139/146.111161.Search in Google Scholar

41. Ghanbary, F., Jafarnejad, E. Inorg. Nano-Met. Chem. 2017, 47, 1675–1681. https://doi.org/10.1080/24701556.2017.1357598.Search in Google Scholar

42. Kurra, N., Wang, R., Alshareef, H. N. J. Mater. Chem. A 2015, 3, 7368–7374. https://doi.org/10.1039/c5ta00829h.Search in Google Scholar

43. Shanmugavalli, O. V., Saravanan, K., Vishista, S., Saravanan, R. Ionics 2019, 25, 4393–4408. https://doi.org/10.1007/s42452-020-2046-3.Search in Google Scholar

44. Li, Z., Shen, Y., Li, Y., Zhenga, F., Liu, L. Polym. Int. 2018, 67, 121–126. https://doi.org/10.1002/pi.5487.Search in Google Scholar

45. Aravinda, L. S., Bhat, K. U., Ramachandra, B. B. Mater. Lett. 2013, 112, 158–161. https://doi.org/10.1016/j.matlet.2013.09.009.Search in Google Scholar

46. Liu, A., Che, H., Mao, Y., Wang, Y., Mu, J., Xu, C., Bai, Y., Zhang, X., Wang, G. Ceram. Int. 2016, 42, 11435–11441. https://doi.org/10.1016/j.ceramint.2016.04.080.Search in Google Scholar

47. Gamby, J., Taberna, P. L., Simon, P., Fauvargue, J. F., Chesineau, M. J. Power Sci. 2001, 101, 109–116. https://doi.org/10.1016/S0378-7753(01)00707-8.Search in Google Scholar

Received: 2022-03-18
Accepted: 2022-09-25
Published Online: 2023-05-23
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0153/html
Scroll to top button