Abstract
The present research paper reports the structural, morphological and electrochemical properties of cerium oxide doped polythiophene nanocomposite. Polythiophene was first polymerized using the chemical oxidation polymerization method and further, it was mixed with an equal amount of cerium oxide (CeO2) nanoparticles by mechanical mixing. The initially generated polythiophene sample exhibited an amorphous character according to X-ray diffraction investigation, however the PTh–nCeO2 polymer nanocomposite displayed good crystallinity. The vibration bands of the PTh and PTh–nCeO2 polymer nanocomposites were further examined using Fourier-transform infrared spectroscopic studies. The morphology and elemental composition of the prepared samples were investigated using scanning electron microscope and energy dispersive X-ray analysis. The electrochemical performance of PTh and PTh–nCeO2 polymer nanocomposite was studied by cyclic voltammetry, Galvanostatic charge–discharge and electrochemical impedance spectroscopy measurements. The PTh–nCeO2 polymer nanocomposites demonstrated a high specific capacitance of 161 F g−1 at a current density of 1 A g−1 among the produced samples. The Nyquist plot (low-frequency area) and Bode plot (phase angle) electrochemical impedance tests revealed excellent capacitive performance. The PTh–nCeO2 polymer nanocomposites may be a good option for high-performance super capacitors, according to the findings.
-
Author contributions: All these works are done by G.K. Meenatchi under the guidance of Dr. G. Velraj.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no competing interests.
-
Data availability statements: The data supporting the findings of this study are available from the corresponding author upon interest.
References
1. Javadi, A., Najjar, W., Bahadori, S., Vatanpour, V., Malek, A., Abouzari-Lotf, E., Shockravi, A. RSC Adv. 2015, 5, 91670–91682. https://doi.org/10.1039/c5ra18898a.Search in Google Scholar
2. Fukuzaki, N., Higashihara, T., Ando, S., Ueda, M. Macromolecules 2010, 43, 1836–1843. https://doi.org/10.1021/ma902013y.Search in Google Scholar
3. Javadi, A., Shockravi, A., Rafieimanesh, A., Malek, A., Ando, S. Polym. Int. 2015, 64, 486–495. https://doi.org/10.1016/j.eurpolymj.2015.02.032.Search in Google Scholar
4. Liu, J. G., Nakamura, Y., Terraza, C. A., Shibasaki, Y., Ando, S., Ueda, S. M. Macromolecules 2008, 209, 195–203. https://doi.org/10.1002/macp.200700305.Search in Google Scholar
5. Javadi, A., Shockravi, A., Koohgard, M., Malek, A., Shourkaei, F. A., Ando, S. Eur. Polym. J. 2015, 66, 328–341. https://doi.org/10.1016/j.eurpolymj.2015.02.032.Search in Google Scholar
6. Wan, M. Conducting Polymers with Micro or Nanometer Structure; Tsinghua University Press: Beijing, 2008.Search in Google Scholar
7. Laforgue, A., Simon, P., Sarrazin, C., Fauvarque, J. Power Sources 1999, 80, 142–148. https://doi.org/10.1016/S0378-7753(98)00258-4.Search in Google Scholar
8. Gnanakan, S. R. P., Rajasekhar, M., Subramania, A. Int. J. Electrochem. Sci. 2009, 4, 1289–1301.10.1016/S1452-3981(23)15222-9Search in Google Scholar
9. Pascariu, P., Vernardou, D., Suchea, M. P., Airinei, A., Ursu, L., Bucur, S., Tudose, I. V., Ionescu, O. N., Koudoumas, E. Mater. Des. 2019, 182, 108027. https://doi.org/10.1016/j.matdes.2019.108027.Search in Google Scholar
10. Lei, Y., Qiu, Z., Tan, N., Du, H., Li, D., Liu, J., Liu, T., Zhang, W., Chang, X. Prog. Org. Coat. 2020, 139, 105430. https://doi.org/10.1016/j.porgcoat.2019.105430.Search in Google Scholar
11. Sindhu, V., Vidya, J. Int. J. Photon. Opt. Technol. 2018, 4, 25–30. https://doi.org/10.1016/j.matchemphys.2005.01.033.Search in Google Scholar
12. He, Y. Mater. Chem. Phys. 2005, 92, 134. https://doi.org/10.1016/j.matchemphys.2005.01.033.Search in Google Scholar
13. Parvatikar, N., Jain, S., Bhoraskar, S. V., Ambika Prasad, M. V. N. J. Appl. Polym. Sci. 2006, 102, 5533. https://doi.org/10.1002/app.24636.Search in Google Scholar
14. Anees, A., Ansari1, M., Khan, A. M., Khan, M. N., Alrokayan, S. A., Alhoshan, M., Alsalhi, S. J. Semiconduct. 2011, 33, 042002. https://doi.org/10.1088/1674-4926/33/4/042002.Search in Google Scholar
15. Feng, J. K., Cao, Y. L., Ai, X. P., Yang, H. X. J. Power Sources 2008, 177, 199. https://doi.org/10.1016/j.jpowsour.2007.10.086.Search in Google Scholar
16. Murugavel, S., Malathi, M. Int. J. Chem. Sci. 2016, 14, 363–371.Search in Google Scholar
17. Sowmiya, G., Velraj, G. J. Mater. Sci. Mater. Electron. 2020, 31, 14287–14294. https://doi.org/10.1007/s10854-020-03985-5.Search in Google Scholar
18. Nemade, K. R., Waghuley, S. A. Asian J. Chem. 2012, 24, 5947–5948.Search in Google Scholar
19. Kausar, A. Int. J. Compos. Mater. 2016, 6, 43–47. https://doi.org/10.5923/j.cmaterials.20160602.01.Search in Google Scholar
20. Culica, M. E., Scutaru, A. L. C., Melinte, V., Coseri, S., Coseri, S. Materials 2020, 13, 2955. https://doi.org/10.3390/ma13132955.Search in Google Scholar PubMed PubMed Central
21. Wu, N. C., Shi, E. W., Zheng, Y. Q., Li, W. J. J. Am. Ceram. Soc. 2002, 85, 2462–2468. https://doi.org/10.1111/j.1151-2916.2002.Tb00481.x.Search in Google Scholar
22. Ahangar, H. A., Kaushal, A., Zakaria1, A., Zamiri, G., Tobaldi, D. J., Ferreira, J. M. F. PLoS One 2015, 24, 1–11. https://doi.org/10.1371/journal.pone.0122989.Search in Google Scholar PubMed PubMed Central
23. Mokkelbost, T., Kaus, I., Grande, T., Einarsrud, M. A. Chem. Mater. 2004, 16, 5489–5494. https://doi.org/10.1021/cm048583p.Search in Google Scholar
24. Wu, N. C., Shi, E. W., Zheng, Y. Q., Li, W. J. J. Am. Ceram. Soc. 2002, 85, 2462–2468. https://doi.org/10.1111/j.1151-2916.2002.Search in Google Scholar
25. Mangalam, D., Prabaharana, D. M., Sadaiyandi, K., Mahendran, M., Sagadevan, S. Mater. Res. 2016, 19, 478–482. https://doi.org/10.1590/1980-5373-MR-2015-0698.Search in Google Scholar
26. Ashwini, I. S., Pattar, J., Anjaneyulu, P., PrakashBabu, D., Sreekanth, R., Manohara, S. R., Nagaraj, M. Synth. Met. 2020, 270, 116588. https://doi.org/10.1016/j.synthmet.2020.116588.Search in Google Scholar
27. Ghanbary, F., Jafarnejad, E. Inorg. Nano-Met. Chem. 2017, 47, 1675–1681. https://doi.org/10.1080/24701556.2017.1357598.Search in Google Scholar
28. Anjaneyulu, P., PrakashBabu, D., Sreekanth, R., Manohara, S. R., Nagaraja, M. Synth. Met. 2020, 270, 116588. https://doi.org/10.1016/j.synthmet.2020.116588.Search in Google Scholar
29. Elango, M., Deepa, M., Subramanian, R., Saraswathy, G., Elango, M. Mater. Today Proc. 2020, 26, 3544–3551. https://doi.org/10.1016/j.matpr.2019.07.246.Search in Google Scholar
30. Dutta, D., Mukherjee, R. Roy. Soc. Chem. 2016, 45, 14352–14362.10.1039/C6DT03032GSearch in Google Scholar PubMed
31. Farahmandjou, M., Zarinkamar, M., Firoozabadi, T. P. Rev. Mex. Fis. 2016, 62, 496–499. https://doi.org/10.1016/j.electacta.2017.11.008.Search in Google Scholar
32. Tripathi, A., Sheo, K., Bahadur, I., Shukla, R. K. J. Mater. Sci. Mater. Electron. 2015, 26, 7421–7430. https://doi.org/10.1007/s10854-015-3373-9.Search in Google Scholar
33. Wadatkar, N. S., Waghuley, S. A. Macromol. Symp. 2016, 362, 129–131. https://doi.org/10.1002/masy.201400263.Search in Google Scholar
34. Kattimani, J., Sankarappa, T., Praveenkumar, K., Ashwajeet, J. S., Ramanna, R., Chandraprabha, G. B., Sujatha, T. Int. J. Adv. Res. Phys. Sci. 2014, 7, 17–21.Search in Google Scholar
35. Khadar, Y. A. S., Balamuruganb, A., Devarajana, V. P., Subramanian, R., Kumar, S. D. J. Mater. Res. Technol. 2019, 8, 267–274. https://doi.org/10.1016/j.jmrt.2017.12.005.Search in Google Scholar
36. Raji, R. K., Ramachandran, T., Muralidharan, M., Suriakarthick, R., Dhilip, M., Hamed, F., Kurapati, V. Int. J. Mater. Res. 2020, 112, 753–765. https://doi.org/10.21203/rs.3.rs-44211/v1.Search in Google Scholar
37. Tholkappiyan, R., Thiemann, T., Hamed, F. Mater. Chem. Phys. 2020, 240, 122138. https://doi.org/10.1016/j.matchemphys.2019.122138.Search in Google Scholar
38. Anitha, R., Kumar, E., Velladurai, S. C. Asian J. Chem. 2019, 31, 1158–1162. https://doi.org/10.14233/ajchem.2019.21910.Search in Google Scholar
39. Shirbhate1, P. D., Pakade, S. V., Yawale, S. P. Trans. Indian Inst. Met. 2016, 69, 669–672. https://doi.org/10.1007/s12666-015-0537-5.Search in Google Scholar
40. Tholkappiyan, R., Vishista, K. Int. J. Mater. Res. 2015, 106, 127–136. https://doi.org/10.3139/146.111161.Search in Google Scholar
41. Ghanbary, F., Jafarnejad, E. Inorg. Nano-Met. Chem. 2017, 47, 1675–1681. https://doi.org/10.1080/24701556.2017.1357598.Search in Google Scholar
42. Kurra, N., Wang, R., Alshareef, H. N. J. Mater. Chem. A 2015, 3, 7368–7374. https://doi.org/10.1039/c5ta00829h.Search in Google Scholar
43. Shanmugavalli, O. V., Saravanan, K., Vishista, S., Saravanan, R. Ionics 2019, 25, 4393–4408. https://doi.org/10.1007/s42452-020-2046-3.Search in Google Scholar
44. Li, Z., Shen, Y., Li, Y., Zhenga, F., Liu, L. Polym. Int. 2018, 67, 121–126. https://doi.org/10.1002/pi.5487.Search in Google Scholar
45. Aravinda, L. S., Bhat, K. U., Ramachandra, B. B. Mater. Lett. 2013, 112, 158–161. https://doi.org/10.1016/j.matlet.2013.09.009.Search in Google Scholar
46. Liu, A., Che, H., Mao, Y., Wang, Y., Mu, J., Xu, C., Bai, Y., Zhang, X., Wang, G. Ceram. Int. 2016, 42, 11435–11441. https://doi.org/10.1016/j.ceramint.2016.04.080.Search in Google Scholar
47. Gamby, J., Taberna, P. L., Simon, P., Fauvargue, J. F., Chesineau, M. J. Power Sci. 2001, 101, 109–116. https://doi.org/10.1016/S0378-7753(01)00707-8.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Hydrogen resistance and trapping behaviour of a cold-drawn ferritic–pearlitic steel wire
- Effect of pre-torsion on the strength and electrical conductivity of aluminum alloy wire
- The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
- Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering
- Isothermal section of the Ti–Mn–Si ternary system at 600 °C
- NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor
- The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Hydrogen resistance and trapping behaviour of a cold-drawn ferritic–pearlitic steel wire
- Effect of pre-torsion on the strength and electrical conductivity of aluminum alloy wire
- The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
- Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering
- Isothermal section of the Ti–Mn–Si ternary system at 600 °C
- NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor
- The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde