Home The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
Article
Licensed
Unlicensed Requires Authentication

The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering

  • Ali Roshani , Mazaher Ramazani EMAIL logo , Mehdi Naderi , Hossein Jamali , Majid Tavoosi , Ehsan Mohammad Sharifi and Mohammad Reza Loghman Estarki ORCID logo EMAIL logo
Published/Copyright: March 7, 2023
Become an author with De Gruyter Brill

Abstract

In this paper, for sintering silicon carbide nanopowders via the spark plasma sintering method, nano-and micro-sized alumina sintering aids were used separately at 3 vol.%, 5 vol.%, and 7 vol.%. The sintering process was undertaken at 1900 °C for 10 min. To investigate some mechanical and physical properties of the resulting samples, density was obtained via the Archimedean method, and hardness was taken by the Vickers indenter method. The microstructure of the samples was examined through scanning electron microscopy. The results indicated that in the samples containing nano-alumina, the largest percentage of density and hardness was related to the sample containing 5 vol.% nano-alumina as a sintering aid and were obtained as 99% of theoretical density and 31.3 GPa, respectively. For the samples containing micro-alumina, the highest percentage of density and hardness was related to the sample containing 7 vol.% micro-alumina and obtained 93% of theoretical density and 20.1 GPa, respectively. By investigating the fractured surfaces of the samples and via the linear intercept method, the largest mean grain size was associated with the densest sample at 3.7 µm.


Corresponding authors: Mazaher Ramazani and Mohammad Reza Loghman Estarki, Department of Materials Engineering, Malek Ashtar University of Technology, Isfahan, Iran, E-mail: (M. Ramazani), (M. R. Loghman Estarki) (M. R. Loghman Estarki)

Acknowledgements

This research was conducted under the financial support of the faculty of materials engineering at Malek Ashtar University of technology.

  1. Author contribution: All authors have contributed to Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, and Project administration.

  2. Research funding: The authors have thanked MUT University for the financial support of this work.

  3. Conflict of interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Availability of data and materials: The data that support the findings of this study are available from the author upon reasonable request.

References

1. Ohji, T., Singh, M., Eds. Engineered Ceramics: Current Status and Future Prospects; Willey Publication: United State of America, 2016.10.1002/9781119100430Search in Google Scholar

2. Gerhardt, R. Properties and Applications of Silicon Carbide; BoD–Books on Demand, InTech publication: Rijeka, Croatia, 2011.10.5772/615Search in Google Scholar

3. Raman, V. B. O. P., Bahl, O. P., Dhawan, U. J. Mater. Sci. 1995, 30, 2686–2693. https://doi.org/10.1007/BF00362153.Search in Google Scholar

4. Lin, B. W., Imai, M., Yano, T., Iseki, T. J. Am. Ceram. Soc. 1986, 69, 67–68. https://doi.org/10.1111/j.1151-2916.1986.tb04753.x.Search in Google Scholar

5. Jihong, S., Jingkun, G., Dongliang, J. Ceram. Int. 1993, 19, 347–351. https://doi.org/10.1016/0272-8842(93)90048-V.Search in Google Scholar

6. Munir, Z. A., Quach, D. V., Ohyanagi, M. J. Am. Ceram. Soc. 2011, 94, 1–19. https://doi.org/10.1016/0272-8842(93)90048-V.Search in Google Scholar

7. Yoshida, H., Morita, K., Kim, B. N., Hiraga, K., Kodo, M., Soga, K., Yamamoto, T. J. Am. Ceram. Soc. 2008, 91, 1707–1710. https://doi.org/10.1111/j.1551-2916.2008.02337.x.Search in Google Scholar

8. Anselmi-Tamburini, U., Garay, J. E., Munir, Z. A. Mater. Sci. Eng. A 2005, 407, 24–30. https://doi.org/10.1016/j.msea.2005.06.066.Search in Google Scholar

9. Raju, K., Yoon, D. H. Ceram. Int. 2016, 42, 17947–17962. https://doi.org/10.1016/j.ceramint.2016.09.022.Search in Google Scholar

10. Unlu, M. D., Goller, G., Yucel, O., Sahin, F. C. J. Acta Phys. A 2014, 125, 257–259. https://doi.org/10.12693/APhysPolA.125.257.Search in Google Scholar

11. Tamari, N., Tanaka, T., Tanaka, K., Kondoh, I., Kawahara, M., Tokita, M. J. Ceram. Soc. Jpn. 1995, 103, 740–742. https://doi.org/10.2109/jcersj.103.740.Search in Google Scholar

12. Maitre, A., Vande Put, A., Laval, J. P., Valette, S., Trolliard, G. J. Eur. Ceram. Soc. 2008, 28, 1881–1890. https://doi.org/10.1016/j.jeurceramsoc.2008.01.002.Search in Google Scholar

13. Merkus, H. G. Particle Size Measurements: Fundamentals, Practice, Quality; Springer Science & Business Media: Netherlan, Vol. 17, 2009.Search in Google Scholar

14. Raya, I., Chupradit, S., Kadhim, M., Mahmoud, M. Z., Jalil, A. T., Surendar, A., Ghafe, S. T., Mustafa, Y. F., Bochvar, A. N. Chin. Phys. B 2021, 31, 016401. https://doi.org/10.1088/1674-1056/ac3655.Search in Google Scholar

15. Ibrahim, A., Magliulo, N., Groben, J., Padilla, A., Akbik, F., Hamid, Z. A. Funct. Biomater. 2020, 11, 85. https://doi.org/10.3390/jfb11040085.Search in Google Scholar PubMed PubMed Central

16. Mendelson, L. I. J. Am. Ceram. Soc. 1969, 52, 443–446. https://doi.org/10.1111/j.1151-2916.1969.tb11975.x.Search in Google Scholar

17. Najafabadi, A. H., Mozaffarinia, R., Rahimi, H., Razavi, R. S., Paimozd, E. Surf. Eng. 2013, 29, 249–254. https://doi.org/10.1179/1743294412Y.0000000080.Search in Google Scholar

18. Wang, Z., Qiang, H., Wang, J., Duan, L. Propellants, Explos. Pyrotech. 2022, 47, e202200046. https://doi.org/10.1002/prep.202200046.Search in Google Scholar

19. Xin, T., Tang, S., Ji, F., Cui, L., He, B., Lin, X., Tian, X., Hou, H., Zhao, Y., Ferry, M. Acta Mater 2022, 239, 118248. https://doi.org/10.1016/j.actamat.2022.118248.Search in Google Scholar

20. Zhang, Z., Yang, F., Zhang, H., Zhang, T., Wang, H., Xu, Y., Ma, Q. Mater. Char. 2021, 171, 110732. https://doi.org/10.1016/j.matchar.2020.110732.Search in Google Scholar

21. Wang, N., Zhao, R., Zhang, L., Guan, X. Microporous Mesoporous Mater. 2022, 345, 112248. https://doi.org/10.1016/j.micromeso.2022.112248.Search in Google Scholar

22. Liu, X., Liu, J., Yang, H., Huang, B., Zeng, G. Appl. Opt. 2022, 61, 6752–6760. https://doi.org/10.1364/AO.465640.Search in Google Scholar PubMed

23. Zhang, X., Sun, X., Lv, T., Weng, L., Chi, M., ShiZhang, J. S. J. Mater. Sci. Mater. Electron. 2020, 31, 13344–13351. https://doi.org/10.1007/s10854-020-03888-5.Search in Google Scholar

24. Hao, W., Xie, J. J. Electrochem. Energy Convers. Storage 2021, 18, 020909. https://doi.org/10.1115/1.4049238.Search in Google Scholar

25. Chen, L., Zhao, Y. Prog. Mater. Sci. 2022, 124, 100868. https://doi.org/10.1016/j.pmatsci.2021.100868.Search in Google Scholar

26. Lv, B., Wang, S., Xu, T., Guo, F. J. Magnesium Alloys 2021, 9, 840–852. https://doi.org/10.1016/j.jma.2020.06.018.Search in Google Scholar

27. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Zhao, W., Mangin, S., Fullerton, E., Jiang, L. Matter 2020, 2, 1582–1593. https://doi.org/10.1016/j.matt.2020.04.001.Search in Google Scholar

28. Liu, C., Ying, P. Chin. Phys. B 2022, 31, 26201. https://doi.org/10.1088/1674-1056/ac0cd2.Search in Google Scholar

29. Han, M., He, H., Kong, W., Dong, K., Wang, B., Yan, X., Ning, L., Wang, X. Fibers Polym. 2022, 23, 1947–1955. https://doi.org/10.1007/s12221-022-4786-8.Search in Google Scholar

30. Kekelidze, N., Tavadze, G., Khutsishvili, E., Gabrichidze, L., Mikaberidze, G. Eur. Chem. Bull. 2016, 5, 376–379.Search in Google Scholar

31. Aslanova, F. Eng. Technol. 2020, 29, 25–33. https://doi.org/10.24200/jrset.vol8iss1pp25-33.Search in Google Scholar

32. Vessally, E., Musavi, M., Poor Heravi, M. Iran. J. Chem. Chem. Eng. 2021, 40, 1720–1736. https://doi.org/10.30492/ijcce.2022.532176.4794.Search in Google Scholar

33. Gharekhani, F., Ardjmand, M., Vaziri, A. Iran. J. Chem. Chem. Eng. 2021, 40, 1304–1314. https://doi.org/10.30492/ijcce.2021.131778.4256.Search in Google Scholar

34. Hoseini, Z., Davoodnia, A., Khojastehnezhad, A., Pordel, M. Eurasian Chem. Commun. 2020, 2, 398–409. https://doi.org/10.33945/sami/ecc.2020.3.10.Search in Google Scholar

35. Ajormal, F., Moradnia, F., Fardood, S. T., Ramazani, A. J. Chem. Rev. 2020, 2, 90–102. https://doi.org/10.33945/sami/jcr.2020.2.2.Search in Google Scholar

36. Chupradit, S., Jalil, A. T., Enina, Y., Neganov, D. A., Alhassan, M. S., Aravindhan, S., Davarpanah, A. J. Nanomater. 2021, 2021, 3250058. https://doi.org/10.1155/2021/3250058.Search in Google Scholar

37. Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., Shewael, I. H., Valiev, G. H., Kianfar, E. Adv. Mater. Sci. Eng. 2021, 2021, 5102014. https://doi.org/10.1155/2021/5102014.Search in Google Scholar

38. Peng, J., Xu, C., Dai, B., Sun, L., Feng, J., Huang, Q. Int. J. GeoMech. 2022, 22, 4022178. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002529.Search in Google Scholar

39. Zhu, Q., Chen, J., Gou, G., Chen, H., Li, P. J. Mater. Process. Technol. 2017, 246, 267–275. https://doi.org/10.1016/j.jmatprotec.2017.03.022.Search in Google Scholar

40. Jalil, A. T., Dilfy, S. H., Meza, S. O., Aravindhan, S., Kadhim, M. M., Aljeboree, A. M. J. Nanostruct. 2021, 1, 333–346. https://doi.org/10.22052/JNS.2021.02.014.Search in Google Scholar

41. Achem, K., Jasim, S. A., Al-Gazally, M. E., Riadi, Y., Yasin, G., Jalil, A.T., Khalaji, A. D., Saleh, M. M., Fenjan, M. N., Mustafa, Y. F. J. Chin. Chem. Soc. 2022, 69, 512–521. https://doi.org/10.1002/jccs.202100507.Search in Google Scholar

42. Bokov, D. O., Jalil, A. T., Alsultany, F. H., Mahmoud, M. Z., Suksatan, W., Chupradit, S., Kheirollahi, P. D., Nezhad, P. D. K. Mol. Simulat. 2022, 48, 1–10. https://doi.org/10.1080/08927022.2021.2025234.Search in Google Scholar

43. Hu, X., Derakhshanfard, A. H., Khalid, I., Jalil, A. T., Opulencia, M. J. C., Dehkordi, R. B., Toghraie, D., Hekmatifar, M., Sabetvand, R. J. Taiwan Inst. Chem. Eng. 2022, 135, 104396. https://doi.org/10.1016/j.jtice.2022.104396.Search in Google Scholar

44. Sadeghi, M., Siavoshani, A. Y., Bazargani, M., Jalil, A. T., Ramezani, M., Heravi, M. P. Monatsh. Chem. 2022, 153, 427–434. https://doi.org/10.1007/s00706-022-02926-8.Search in Google Scholar

45. Sivaraman, R., Patra, I., Opulencia, M. J. C., Sagban, R., Sharma, H., Jalil, A. T., Ebadi, G. J. Electroanal. Chem. 2022, 917, 116413. https://doi.org/10.1016/j.jelechem.2022.116413.Search in Google Scholar

46. Anzum, R., Alawamleh, H. S. K., Bokov, D. O., Jalil, A. T., Hoi, H. T., Abdelbasset, W. K., Thoi, N. T., Widjaja, G., Kurochkin, A. Food Sci. Technol. 2022, 42, e80721-1–80721-7. https://doi.org/10.1590/fst.80721.Search in Google Scholar

47. Saleh, R. O., Bokov, D. O., Fenjan, M. N., Abdelbasset, W. K., Altimari Jalil, U. S. A. T., Cao, Y., Thangavelu, L., Suksatan, W. J. Mol. Liq. 2022, 352, 118676. https://doi.org/10.1016/j.molliq.2022.118676.Search in Google Scholar

48. Liu, B., Khalid, I., Patra, I., Kuzichkin, O. R., Sivaraman, R., Jalil, A. T., Hekmatifar, M., Fadhil Smaisim, G., Sh, . Majdi H. J. Mol. Liq. 2022, 364, 119925. https://doi.org/10.1016/j.molliq.2022.119925.Search in Google Scholar

49. Jasim, S. A., Hadi, J. M., Opulencia, M. J. C., Karim, Y. S., Mahdi, A. B., Kadhim, M. M., Falih, K. T., Jalil, A. T., Mustafa, Y. F. J. Alloys Compd. 2022, 917, 165404. https://doi.org/10.1016/j.jallcom.2022.165404.Search in Google Scholar

50. Kadhim, M. M., Sead, F. F., Jalil, A. T., Taban, T. Z., Rheima, A. M., Almashhadani, H. A., Hamel, S. Monatsh. Chem. 2022, 153, 589–596. https://doi.org/10.1007/s00706-022-02952-6.Search in Google Scholar

51. Jasim, S. A., Hadi, J. M., Jalil, A. T., Opulencia, M. J. C., Hammid, A. T., Tohidimoghadam, M., Manesh, M. M. Front. Chem. 2022, 10, 868794. https://doi.org/10.3389/fchem.2022.868794.Search in Google Scholar PubMed PubMed Central

52. Zhao, G., Hooman, M., Yarigarravesh, M., Algarni, M., Opulencia, M. J. C., Alsaikhan, F., Jalil, A. T., Mohamed, A., AboRas, K. M., Rahman, M. L., Sarjadi, M. S. Arab. J. Chem. 2022, 15, 104115. https://doi.org/10.1016/j.arabjc.2022.104115.Search in Google Scholar

Received: 2022-08-06
Accepted: 2022-10-12
Published Online: 2023-03-07
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0356/html
Scroll to top button