Abstract
Al2O3 has received increasing attention in the field of cutting tools and structural ceramics owing to its good mechanical performance. The mechanical and thermodynamic properties of Al2O3 matrix composites prepared by temperature gradient spark plasma sintering were investigated in this study. Liquid-phase sintering was confirmed to have occurred, based on thermodynamics and X-ray diffraction analysis during the fabrication of the Al2O3 composites. By dynamically modifying the heating rate during the entire preparation process, Al2O3 composites with smaller grain sizes were obtained. The effect of the tremolite additive on the hardness of the Al2O3 composites was elucidated by comprehensively considering the hardness and densification effects. The microstructural evolution of the composites was analyzed. The critical crack length was considered as the parameter necessary to evaluate the thermal shock resistance of the Al2O3 composites. The crack propagation resistance was found to significantly affect the thermal shock resistance of the Al2O3 composites. The results showed that the thermal shock resistance of the Al2O3 composites improved owing to the decrease in porosity and the improvement in mechanical properties due to the addition of tremolite.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors are grateful to the financial support from the Natural Science Foundation of Shandong Province (Grant No. ZR2022ME169 and ZR2021ME152), National Natural Science Foundation of China (Grant No. 51505208), Key Technology Research and Development Program of Shandong province (Grant No. 2019GGX104085).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Lu, Z. L., Tian, G. Q., Wan, W. J., Miao, K., Li, D. C. Ceram. Int. 2016, 42, 18851. https://doi.org/10.1016/j.ceramint.2016.09.031.Search in Google Scholar
2. Deng, J. X., Liu, L. L., Liu, J. J., Zhao, J. L., Yang, X. F. Int. J. Mach. Tools Manuf. 2005, 45, 1393. https://doi.org/10.1016/j.ijmachtools.2005.01.033.Search in Google Scholar
3. Yin, Z. B., Huang, C. Z., Yuan, J. T., Zou, B., Liu, H. L., Zhu, H. T. Ceram. Int. 2015, 41, 7059. https://doi.org/10.1016/j.ceramint.2015.02.012.Search in Google Scholar
4. Deng, J. X., Yun, D. L., Tan, Y. Q. Int. J. Refract. Met. Hard Mater. 2009, 27, 734. https://doi.org/10.1016/j.ijrmhm.2008.12.004.Search in Google Scholar
5. Deng, J. X., Feng, Y. H., Ding, Z. L., Shi, P. W. J. Eur. Ceram. Soc. 2003, 23, 323. https://doi.org/10.1016/S0955-2219(02)00183-8.Search in Google Scholar
6. Walker, W. J.Jr. (Toledo, OH, US). “Spark plug having a ceramic insulator with improved high temperature electrical properties.” U. S. Patent: 7799717, 2010.Search in Google Scholar
7. Carpio, P., Salvador, M. D., Borrell, A., Sánchez, E., Moreno, R. Surf. Coat. Technol. 2016, 307, 713. https://doi.org/10.1016/j.surfcoat.2016.09.060.Search in Google Scholar
8. Mirzamohammadi, S., Khorsand, H., Aliofkhazraei, M. Surf. Coat. Technol. 2017, 313, 202. https://doi.org/10.1016/j.surfcoat.2017.01.025.Search in Google Scholar
9. Hentour, K., Marsal, A., Turq, V., Weibel, A., Ansart, F., Sobrino, J. M., Chen, Y. M., Garcia, J., Cardey, P. F., Laurent, C. Mater. Today Commun. 2016, 8, 118. https://doi.org/10.1016/j.mtcomm.2016.07.007.Search in Google Scholar
10. Bal, B. S., Rahaman, M. N. Semin. Arthroplasty 2011, 22, 254. https://doi.org/10.1053/j.sart.2011.09.006.Search in Google Scholar
11. Piconi, C., Condo, S. G., Kosmač, T. Adv. Ceram. Dent. 2014, 219. https://doi.org/10.1016/B978-0-12-394619-5.00011-0.Search in Google Scholar
12. Fan, J. Y., Lin, T. T., Hu, F. X., Yu, Y., Ibrahim, M., Zheng, R. B., Huang, S. B., Ma, J. F. Ceram. Int. 2017, 43, 3647. https://doi.org/10.1016/j.ceramint.2016.11.204.Search in Google Scholar
13. Ai, T. T., Niu, Q. F., Deng, Z. F., Yuan, X. Q., Li, W. H. Int. J. Mater. Res. 2019, 110, 740. https://doi.org/10.3139/146.111795.Search in Google Scholar
14. Ai, T. T., Zhang, Y. T., Feng, X. M., Li, W. H. Int. J. Mater. Res. 2010, 101, 1241. https://doi.org/10.3139/146.110402.Search in Google Scholar
15. Sadeghi, B., Shamanian, M., Cavaliere, P., Ashrafizadeh, F. Int. J. Mater. Res. 2018, 109, 900. https://doi.org/10.3139/146.111686.Search in Google Scholar
16. Borges, O. H., Santos, T.Jr., Salvini, V. R., Pandolfelli, V. C. Ceram. Int. 2020, 46, 5929. https://doi.org/10.1016/j.ceramint.2019.11.046.Search in Google Scholar
17. Baik, S., Moon, J. H. J. Am. Ceram. Soc. 1991, 74, 819. https://doi.org/10.1111/j.1151-2916.1991.tb06931.x.Search in Google Scholar
18. Bae, S. I., Baik, S. J. Am. Ceram. Soc. 1994, 77, 2499. https://doi.org/10.1111/j.1151-2916.1994.tb04634.x.Search in Google Scholar
19. Azhar, A. Z. A., Mohamed, H., Ratnam, M. M., Ahmad, Z. A. J. Alloys Compd. 2010, 497, 316. https://doi.org/10.1016/j.jallcom.2010.03.054.Search in Google Scholar
20. Rittidech, A., Portia, L., Bongkarn, T. Mater. Sci. Eng. A 2006, 438–440, 395. https://doi.org/10.1016/j.msea.2006.02.176.Search in Google Scholar
21. Nakajima, A., Messing, G. L. J. Am. Ceram. Soc. 1996, 79, 3199. https://doi.org/10.1111/j.1151-2916.1998.tb02464.x.Search in Google Scholar
22. Kong, M., Vogt, T., Lee, Y. Curr. Appl. Phys. 2018, 18, 1218. https://doi.org/10.1016/j.cap.2018.05.018.Search in Google Scholar
23. Ayyappadas, C., Teja, R., Annamalai, A. R., Agrawal, D. K., Dilkush, S., Muthuchamy, A. Int. J. Mater. Res. 2021, 112, 118. https://doi.org/10.1515/ijmr-2020-7849.Search in Google Scholar
24. Trunec, M., Klimke, J., Shen, Z. J. J. Eur. Ceram. Soc. 2016, 36, 4333. https://doi.org/10.1016/j.jeurceramsoc.2016.06.004.Search in Google Scholar
25. Tamura, Y., Moshtaghioun, B. M., Gomez-Garcia, D., Rodríguez, A. D. Ceram. Int. 2017, 43, 658. https://doi.org/10.1016/j.ceramint.2016.09.210.Search in Google Scholar
26. Gao, L., Wang, H. Z., Hong, J. S., Miyamoto, H., Miyamoto, K., Nishikawa, Y., Torre, S. D. D. L. J. Eur. Ceram. Soc. 1999, 19, 609. https://doi.org/10.1016/S0955-2219(98)00232-5.Search in Google Scholar
27. Zhang, J. F., Tu, R., Goto, T. J. Eur. Ceram. Soc. 2014, 34, 435. https://doi.org/10.1016/j.jeurceramsoc.2013.08.014.Search in Google Scholar
28. Ormanci, O., Akin, I., Sahin, F., Yucel, O., Simon, V., Cavalu, S., Goller, G. Mat. Sci. Eng. C 2014, 40, 16. https://doi.org/10.1016/j.msec.2014.03.041.Search in Google Scholar PubMed
29. Chen, W. H., Lin, H. T., Chen, J. M., Nayak, P. K., Lee, A. C., Lu, H. H., Huang, J. L. Int. J. Refract. Met. Hard Mater. 2016, 54, 279. https://doi.org/10.1016/j.ijrmhm.2015.07.030.Search in Google Scholar
30. Liu, J. L., Wang, Y. G., Yang, F. Q., Chen, K. P., An, L. N. J. Alloys Compd. 2015, 622, 596. https://doi.org/10.1016/j.jallcom.2014.10.113.Search in Google Scholar
31. Lao, X. B., Xu, X. Y., Cheng, H., Liu, H., Liang, L. F. Ceram. Int. 2019, 45, 2003. https://doi.org/10.1016/j.ceramint.2018.10.098.Search in Google Scholar
32. Song, J. J., Su, Y. F., Fan, H. Z., Zhang, Y. S., Hu, L. T. J. Eur. Ceram. Soc. 2017, 37, 213. https://doi.org/10.1016/j.jeurceramsoc.2016.08.016.Search in Google Scholar
33. Zake-Tiluga, I., Svinka, V., Svinka, R., Grase, L. Ceram. Int. 2015, 41, 11504. https://doi.org/10.1016/j.ceramint.2015.05.116.Search in Google Scholar
34. Nie, Y., Oliete, P. B., Merino, R. I. Scr. Mater. 2019, 160, 20. https://doi.org/10.1016/j.scriptamat.2018.09.036.Search in Google Scholar
35. Liu, C. X., Sun, J. L., Gong, F., Li, B. Ceram. Int. 2020, 46, 9606. https://doi.org/10.1016/j.ceramint.2019.12.226.Search in Google Scholar
36. Pettersson, P., Johnsson, M., Shen, Z. J. Eur. Ceram. Soc. 2002, 22, 1883. https://doi.org/10.1002/9781118380925.ch16.Search in Google Scholar
37. Liu, C. X., Sun, J. L., Li, G., Li, B., Gong, F. Ceram. Int. 2020, 46, 857. https://doi.org/10.1016/j.ceramint.2019.09.043.Search in Google Scholar
38. Cook, R. F., Lawn, B. R. J. Am. Ceram. Soc. 1983, 66, 200. https://doi.org/10.1111/j.1151-2916.1983.tb10571.x.Search in Google Scholar
39. Zhao, J., Ai, X., Huang, X. P. J. Mater. Process. Technol. 2002, 129, 161. https://doi.org/10.1016/S0924-0136(02)00602-7.Search in Google Scholar
40. Maensiri, S., Roberts, S. G. J. Eur. Ceram. Soc. 2002, 22, 2945. https://doi.org/10.1016/S0955-2219(02)00052-3.Search in Google Scholar
41. Wang, L., Shi, J. L., Gao, J. H., Yan, D. S. J. Eur. Ceram. Soc. 2001, 21, 1213. https://doi.org/10.1016/S0955-2219(00)00325-3.Search in Google Scholar
42. Duckworth, W. J. Am. Ceram. Soc. 1953, 36, 68. https://doi.org/10.1111/j.1151-2916.1953.tb12838.x.Search in Google Scholar
43. Ryshkewitch, E. J. Am. Ceram. Soc. 1953, 36, 65. https://doi.org/10.1111/j.1151-2916.1953.tb12837.x.Search in Google Scholar
44. Rice, R. W. Porosity of Ceramics; Marcel Dekker: New York, 1998.Search in Google Scholar
45. Chen, Y. Thermal Shock Behavior of Ceramics with Porous and Layered Structures, Ph.D. Thesis; Cambridge University: UK, 1999.Search in Google Scholar
46. Dorey, R. A., Yeomans, J. A., Smith, P. A. J. Eur. Ceram. Soc. 2002, 22, 403. https://doi.org/10.1016/S0955-2219(01)00303-X.Search in Google Scholar
47. Ziegler, G. Progress in Nitrogen Ceramics; Martinus Nihoff Publisher: Boston, 1983.Search in Google Scholar
48. Hirano, T., Niihara, K. Mater. Lett. 1996, 26, 285. https://doi.org/10.1016/0167-577X(96)80001-2.Search in Google Scholar
49. Cui, K., Li, Y. K. Int. J. Refract. Met. Hard Mater. 2016, 54, 148. https://doi.org/10.1016/j.ijrmhm.2015.07.028.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Hydrogen resistance and trapping behaviour of a cold-drawn ferritic–pearlitic steel wire
- Effect of pre-torsion on the strength and electrical conductivity of aluminum alloy wire
- The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
- Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering
- Isothermal section of the Ti–Mn–Si ternary system at 600 °C
- NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor
- The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Hydrogen resistance and trapping behaviour of a cold-drawn ferritic–pearlitic steel wire
- Effect of pre-torsion on the strength and electrical conductivity of aluminum alloy wire
- The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
- Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering
- Isothermal section of the Ti–Mn–Si ternary system at 600 °C
- NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor
- The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde