Home Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering
Article
Licensed
Unlicensed Requires Authentication

Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering

  • Junlong Sun , Weifu Zhao , Juyun Wang and Changxia Liu EMAIL logo
Published/Copyright: May 23, 2023
Become an author with De Gruyter Brill

Abstract

Al2O3 has received increasing attention in the field of cutting tools and structural ceramics owing to its good mechanical performance. The mechanical and thermodynamic properties of Al2O3 matrix composites prepared by temperature gradient spark plasma sintering were investigated in this study. Liquid-phase sintering was confirmed to have occurred, based on thermodynamics and X-ray diffraction analysis during the fabrication of the Al2O3 composites. By dynamically modifying the heating rate during the entire preparation process, Al2O3 composites with smaller grain sizes were obtained. The effect of the tremolite additive on the hardness of the Al2O3 composites was elucidated by comprehensively considering the hardness and densification effects. The microstructural evolution of the composites was analyzed. The critical crack length was considered as the parameter necessary to evaluate the thermal shock resistance of the Al2O3 composites. The crack propagation resistance was found to significantly affect the thermal shock resistance of the Al2O3 composites. The results showed that the thermal shock resistance of the Al2O3 composites improved owing to the decrease in porosity and the improvement in mechanical properties due to the addition of tremolite.


Corresponding author: Changxia Liu, School of Transportation, Ludong University, Yantai 264025, Shandong Province, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are grateful to the financial support from the Natural Science Foundation of Shandong Province (Grant No. ZR2022ME169 and ZR2021ME152), National Natural Science Foundation of China (Grant No. 51505208), Key Technology Research and Development Program of Shandong province (Grant No. 2019GGX104085).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Lu, Z. L., Tian, G. Q., Wan, W. J., Miao, K., Li, D. C. Ceram. Int. 2016, 42, 18851. https://doi.org/10.1016/j.ceramint.2016.09.031.Search in Google Scholar

2. Deng, J. X., Liu, L. L., Liu, J. J., Zhao, J. L., Yang, X. F. Int. J. Mach. Tools Manuf. 2005, 45, 1393. https://doi.org/10.1016/j.ijmachtools.2005.01.033.Search in Google Scholar

3. Yin, Z. B., Huang, C. Z., Yuan, J. T., Zou, B., Liu, H. L., Zhu, H. T. Ceram. Int. 2015, 41, 7059. https://doi.org/10.1016/j.ceramint.2015.02.012.Search in Google Scholar

4. Deng, J. X., Yun, D. L., Tan, Y. Q. Int. J. Refract. Met. Hard Mater. 2009, 27, 734. https://doi.org/10.1016/j.ijrmhm.2008.12.004.Search in Google Scholar

5. Deng, J. X., Feng, Y. H., Ding, Z. L., Shi, P. W. J. Eur. Ceram. Soc. 2003, 23, 323. https://doi.org/10.1016/S0955-2219(02)00183-8.Search in Google Scholar

6. Walker, W. J.Jr. (Toledo, OH, US). “Spark plug having a ceramic insulator with improved high temperature electrical properties.” U. S. Patent: 7799717, 2010.Search in Google Scholar

7. Carpio, P., Salvador, M. D., Borrell, A., Sánchez, E., Moreno, R. Surf. Coat. Technol. 2016, 307, 713. https://doi.org/10.1016/j.surfcoat.2016.09.060.Search in Google Scholar

8. Mirzamohammadi, S., Khorsand, H., Aliofkhazraei, M. Surf. Coat. Technol. 2017, 313, 202. https://doi.org/10.1016/j.surfcoat.2017.01.025.Search in Google Scholar

9. Hentour, K., Marsal, A., Turq, V., Weibel, A., Ansart, F., Sobrino, J. M., Chen, Y. M., Garcia, J., Cardey, P. F., Laurent, C. Mater. Today Commun. 2016, 8, 118. https://doi.org/10.1016/j.mtcomm.2016.07.007.Search in Google Scholar

10. Bal, B. S., Rahaman, M. N. Semin. Arthroplasty 2011, 22, 254. https://doi.org/10.1053/j.sart.2011.09.006.Search in Google Scholar

11. Piconi, C., Condo, S. G., Kosmač, T. Adv. Ceram. Dent. 2014, 219. https://doi.org/10.1016/B978-0-12-394619-5.00011-0.Search in Google Scholar

12. Fan, J. Y., Lin, T. T., Hu, F. X., Yu, Y., Ibrahim, M., Zheng, R. B., Huang, S. B., Ma, J. F. Ceram. Int. 2017, 43, 3647. https://doi.org/10.1016/j.ceramint.2016.11.204.Search in Google Scholar

13. Ai, T. T., Niu, Q. F., Deng, Z. F., Yuan, X. Q., Li, W. H. Int. J. Mater. Res. 2019, 110, 740. https://doi.org/10.3139/146.111795.Search in Google Scholar

14. Ai, T. T., Zhang, Y. T., Feng, X. M., Li, W. H. Int. J. Mater. Res. 2010, 101, 1241. https://doi.org/10.3139/146.110402.Search in Google Scholar

15. Sadeghi, B., Shamanian, M., Cavaliere, P., Ashrafizadeh, F. Int. J. Mater. Res. 2018, 109, 900. https://doi.org/10.3139/146.111686.Search in Google Scholar

16. Borges, O. H., Santos, T.Jr., Salvini, V. R., Pandolfelli, V. C. Ceram. Int. 2020, 46, 5929. https://doi.org/10.1016/j.ceramint.2019.11.046.Search in Google Scholar

17. Baik, S., Moon, J. H. J. Am. Ceram. Soc. 1991, 74, 819. https://doi.org/10.1111/j.1151-2916.1991.tb06931.x.Search in Google Scholar

18. Bae, S. I., Baik, S. J. Am. Ceram. Soc. 1994, 77, 2499. https://doi.org/10.1111/j.1151-2916.1994.tb04634.x.Search in Google Scholar

19. Azhar, A. Z. A., Mohamed, H., Ratnam, M. M., Ahmad, Z. A. J. Alloys Compd. 2010, 497, 316. https://doi.org/10.1016/j.jallcom.2010.03.054.Search in Google Scholar

20. Rittidech, A., Portia, L., Bongkarn, T. Mater. Sci. Eng. A 2006, 438–440, 395. https://doi.org/10.1016/j.msea.2006.02.176.Search in Google Scholar

21. Nakajima, A., Messing, G. L. J. Am. Ceram. Soc. 1996, 79, 3199. https://doi.org/10.1111/j.1151-2916.1998.tb02464.x.Search in Google Scholar

22. Kong, M., Vogt, T., Lee, Y. Curr. Appl. Phys. 2018, 18, 1218. https://doi.org/10.1016/j.cap.2018.05.018.Search in Google Scholar

23. Ayyappadas, C., Teja, R., Annamalai, A. R., Agrawal, D. K., Dilkush, S., Muthuchamy, A. Int. J. Mater. Res. 2021, 112, 118. https://doi.org/10.1515/ijmr-2020-7849.Search in Google Scholar

24. Trunec, M., Klimke, J., Shen, Z. J. J. Eur. Ceram. Soc. 2016, 36, 4333. https://doi.org/10.1016/j.jeurceramsoc.2016.06.004.Search in Google Scholar

25. Tamura, Y., Moshtaghioun, B. M., Gomez-Garcia, D., Rodríguez, A. D. Ceram. Int. 2017, 43, 658. https://doi.org/10.1016/j.ceramint.2016.09.210.Search in Google Scholar

26. Gao, L., Wang, H. Z., Hong, J. S., Miyamoto, H., Miyamoto, K., Nishikawa, Y., Torre, S. D. D. L. J. Eur. Ceram. Soc. 1999, 19, 609. https://doi.org/10.1016/S0955-2219(98)00232-5.Search in Google Scholar

27. Zhang, J. F., Tu, R., Goto, T. J. Eur. Ceram. Soc. 2014, 34, 435. https://doi.org/10.1016/j.jeurceramsoc.2013.08.014.Search in Google Scholar

28. Ormanci, O., Akin, I., Sahin, F., Yucel, O., Simon, V., Cavalu, S., Goller, G. Mat. Sci. Eng. C 2014, 40, 16. https://doi.org/10.1016/j.msec.2014.03.041.Search in Google Scholar PubMed

29. Chen, W. H., Lin, H. T., Chen, J. M., Nayak, P. K., Lee, A. C., Lu, H. H., Huang, J. L. Int. J. Refract. Met. Hard Mater. 2016, 54, 279. https://doi.org/10.1016/j.ijrmhm.2015.07.030.Search in Google Scholar

30. Liu, J. L., Wang, Y. G., Yang, F. Q., Chen, K. P., An, L. N. J. Alloys Compd. 2015, 622, 596. https://doi.org/10.1016/j.jallcom.2014.10.113.Search in Google Scholar

31. Lao, X. B., Xu, X. Y., Cheng, H., Liu, H., Liang, L. F. Ceram. Int. 2019, 45, 2003. https://doi.org/10.1016/j.ceramint.2018.10.098.Search in Google Scholar

32. Song, J. J., Su, Y. F., Fan, H. Z., Zhang, Y. S., Hu, L. T. J. Eur. Ceram. Soc. 2017, 37, 213. https://doi.org/10.1016/j.jeurceramsoc.2016.08.016.Search in Google Scholar

33. Zake-Tiluga, I., Svinka, V., Svinka, R., Grase, L. Ceram. Int. 2015, 41, 11504. https://doi.org/10.1016/j.ceramint.2015.05.116.Search in Google Scholar

34. Nie, Y., Oliete, P. B., Merino, R. I. Scr. Mater. 2019, 160, 20. https://doi.org/10.1016/j.scriptamat.2018.09.036.Search in Google Scholar

35. Liu, C. X., Sun, J. L., Gong, F., Li, B. Ceram. Int. 2020, 46, 9606. https://doi.org/10.1016/j.ceramint.2019.12.226.Search in Google Scholar

36. Pettersson, P., Johnsson, M., Shen, Z. J. Eur. Ceram. Soc. 2002, 22, 1883. https://doi.org/10.1002/9781118380925.ch16.Search in Google Scholar

37. Liu, C. X., Sun, J. L., Li, G., Li, B., Gong, F. Ceram. Int. 2020, 46, 857. https://doi.org/10.1016/j.ceramint.2019.09.043.Search in Google Scholar

38. Cook, R. F., Lawn, B. R. J. Am. Ceram. Soc. 1983, 66, 200. https://doi.org/10.1111/j.1151-2916.1983.tb10571.x.Search in Google Scholar

39. Zhao, J., Ai, X., Huang, X. P. J. Mater. Process. Technol. 2002, 129, 161. https://doi.org/10.1016/S0924-0136(02)00602-7.Search in Google Scholar

40. Maensiri, S., Roberts, S. G. J. Eur. Ceram. Soc. 2002, 22, 2945. https://doi.org/10.1016/S0955-2219(02)00052-3.Search in Google Scholar

41. Wang, L., Shi, J. L., Gao, J. H., Yan, D. S. J. Eur. Ceram. Soc. 2001, 21, 1213. https://doi.org/10.1016/S0955-2219(00)00325-3.Search in Google Scholar

42. Duckworth, W. J. Am. Ceram. Soc. 1953, 36, 68. https://doi.org/10.1111/j.1151-2916.1953.tb12838.x.Search in Google Scholar

43. Ryshkewitch, E. J. Am. Ceram. Soc. 1953, 36, 65. https://doi.org/10.1111/j.1151-2916.1953.tb12837.x.Search in Google Scholar

44. Rice, R. W. Porosity of Ceramics; Marcel Dekker: New York, 1998.Search in Google Scholar

45. Chen, Y. Thermal Shock Behavior of Ceramics with Porous and Layered Structures, Ph.D. Thesis; Cambridge University: UK, 1999.Search in Google Scholar

46. Dorey, R. A., Yeomans, J. A., Smith, P. A. J. Eur. Ceram. Soc. 2002, 22, 403. https://doi.org/10.1016/S0955-2219(01)00303-X.Search in Google Scholar

47. Ziegler, G. Progress in Nitrogen Ceramics; Martinus Nihoff Publisher: Boston, 1983.Search in Google Scholar

48. Hirano, T., Niihara, K. Mater. Lett. 1996, 26, 285. https://doi.org/10.1016/0167-577X(96)80001-2.Search in Google Scholar

49. Cui, K., Li, Y. K. Int. J. Refract. Met. Hard Mater. 2016, 54, 148. https://doi.org/10.1016/j.ijrmhm.2015.07.028.Search in Google Scholar

Received: 2022-05-10
Accepted: 2022-11-11
Published Online: 2023-05-23
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0220/html
Scroll to top button