The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
-
Walid Kamal Abdelbasset
, Saade Abdalkareem Jasim
Abstract
In today’s world, wound healing is a growing serious problem for clinical institutes. In this study, nanofibrous scaffolds were prepared using polyurethane as a mat scaffold. Also, by immersing curcumin as an antibacterial component another scaffold was fabricated using the electrospinning technique. The obtained scaffolds were characterized by means of scanning electron microscopy, tensile analysis, porosity, and water vapor transmission rate. MTT and DAPI staining were used to prove the biocompatibility and cell attachment of the nanofibers. The curcumin incorporated into the PU scaffold can stop both the Gram-negative and Gram-positive bacteria activities through direct contact with them. Studies showed that the PU/Curcumin scaffold has considerable ability to play a key role in wound healing applications.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R145), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Competing interest: The authors declare that there is no conflict of interest.
References
1. Pankongadisak, P., Sangklin, S., Chuysinuan, P., Suwantong, O., Supaphol, P. The use of electrospun curcumin-loaded poly(L-lactic acid) fiber mats as wound dressing materials. J. Drug Deliv. Sci. Technol. 2019, 53, 101121. https://doi.org/10.1016/j.jddst.2019.06.018.Search in Google Scholar
2. Jiang, T., Ghosh, R., Charcosset, C. In vitro anti-inflammatory activity of silymarin/hydroxyapatite/chitosan nanocomposites and its cytotoxic effect using brine shrimp lethality assay. J. Popul. Ther. Clin. Pharmacol. 2021, 112, 419–430. https://doi.org/10.1016/j.tifs.2021.04.015.Search in Google Scholar
3. Esmaeili, E., Eslami-Arshaghi, T., Hosseinzadeh, S., Elahirad, E., Jamalpoor, Z., Hatamie, S., Soleimani, M. The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: antimicrobial performance and cutaneous wound healing. Int. J. Biol. Macromol. 2020, 152, 418–427. https://doi.org/10.1016/j.ijbiomac.2020.02.295.Search in Google Scholar PubMed
4. Thu, H.-E., Zulfakar, M. H., Ng, S.-F. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int. J. Pharm. 2012, 434, 375–383. https://doi.org/10.1016/j.ijpharm.2012.05.044.Search in Google Scholar PubMed
5. Percival, N. J. Classification of wounds and their management. Surgery 2002, 20, 114–117. https://doi.org/10.1383/surg.20.5.114.14626.Search in Google Scholar
6. Thangapazham, R. L., Sharad, S., Maheshwari, R. K. Skin regenerative potentials of curcumin. Biofactors 2013, 39, 141–149. https://doi.org/10.1002/biof.1078.Search in Google Scholar PubMed
7. Kuznetsova, O. Y., Kharitonova, M. A. Efficiency of healing of wounds of abscesses and phlegmons of the submandillar triangle. Eurasian Chem. Commun. 2020, 2, 1228–1232. https://doi.org/10.22034/ecc.2020.121753.Search in Google Scholar
8. Boateng, J., Catanzano, O. Advanced therapeutic dressings for effective wound healing - a review. J. Pharmaceut. Sci. 2015, 104, 3653–3680. https://doi.org/10.1002/jps.24610.Search in Google Scholar PubMed
9. Shetty, S., Sharma, M., Kabekkodu, S., Anil Kumar, N., Satyamoorthy, K., Radhakrishnan, R. Understanding the molecular mechanism associated with reversal of oral submucous fibrosis targeting hydroxylysine aldehyde-derived collagen cross-links. J. Carcinog. 2021, 20, 9. https://doi.org/10.4103/jcar.JCar_24_20.Search in Google Scholar PubMed PubMed Central
10. Boateng, J. S., Matthews, K. H., Stevens, H. N. E., Eccleston, G. M. Wound healing dressings and drug delivery systems: a review. J. Pharmaceut. Sci. 2008, 97, 2892–2923. https://doi.org/10.1002/jps.21210.Search in Google Scholar PubMed
11. A review: emerging trends in bionanocomposites. Int. J. Pharm. Res. Technol. 2021, 11, 1–8. https://doi.org/10.31838/ijprt/11.01.01.Search in Google Scholar
12. Sabet, M., Salavati-Niasari, M., Esmaeili, E. Synthesis of zinc sulfide nanostructures with different sulfur sources via mild hydrothermal route: investigation of crystal phase and morphology. J. Inorg. Organomet. Polym. Mater. 2016, 26, 738–743. https://doi.org/10.1007/s10904-016-0374-y.Search in Google Scholar
13. Esmaeili, E., Sabet, M., Salavati-Niasari, M., Zarghami, Z., Bagheri, S. Effect of sulfur source on cadmium sulfide nanostructures morphologies via simple hydrothermal route. J. Cluster Sci. 2016, 27, 351–360. https://doi.org/10.1007/s10876-015-0934-2.Search in Google Scholar
14. Hosseinzadeh, S., Hamedi, S., Esmaeili, E., Kabiri, M., Babaie, A., Soleimani, M., Ardeshirylajimi, A. Mucoadhesive nanofibrous membrane with anti-inflammatory activity. Polym. Bull. 2018, 76, 4827–4840. https://doi.org/10.1007/s00289-018-2618-1.Search in Google Scholar
15. Naureen, B., Haseeb, A. S. M. A., Basirun, W. J., Muhamad, F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Mater. Sci. Eng. C 2021, 118, 111228. https://doi.org/10.1016/j.msec.2020.111228.Search in Google Scholar PubMed
16. Mighani, H., Sajadinia, S. M., Nasr-Isfahani, H., Bakherad, M. Synthesis of new polyurethanes based on 2, 3-Dihidro-1, 4-Phthalazinedione. Adv. J. Chem. A 2021, 4, 300–307.Search in Google Scholar
17. Mogoşanu, G. D., Grumezescu, A. M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 2014, 463, 127–136. https://doi.org/10.1016/j.ijpharm.2013.12.015.Search in Google Scholar PubMed
18. Solanki, A., Das, M., Thakore, S. A review on carbohydrate embedded polyurethanes: an emerging area in the scope of biomedical applications. Carbohydr. Polym. 2018, 181, 1003–1016. https://doi.org/10.1016/j.carbpol.2017.11.049.Search in Google Scholar PubMed
19. Bahrami, S., Solouk, A., Mirzadeh, H., Seifalian, A. M. Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Compos. B Eng. 2019, 168, 421–431. https://doi.org/10.1016/j.compositesb.2019.03.044.Search in Google Scholar
20. Ambarak, M., Asweisi, A. Determination of selenium in biological samples by flame atomic absorption spectrometry after preconcentration on modified polyurethane foam. Adv. J. Chem. Sect. B. 2020, 2, 10–17. https://doi.org/10.33945/SAMI/AJCB.2020.1.3.Search in Google Scholar
21. Jiang, T., Ghosh, R., Charcosset, C. Extraction, purification and applications of curcumin from plant materials-A comprehensive review. Trends Food Sci. Technol. 2021, 112, 419–430. https://doi.org/10.1016/j.tifs.2021.04.015.Search in Google Scholar
22. Ahmed Ismail, K., El Askary, A., Farea, M. O., Awwad, N. S., Ibrahium, H. A., Eid Moustapha, M., Menazea, A. A. Perspectives on composite films of chitosan-based natural products (Ginger, Curcumin, and Cinnamon) as biomaterials for wound dressing. Arab. J. Chem. 2022, 15, 103716. https://doi.org/10.1016/j.arabjc.2022.103716.Search in Google Scholar
23. Zou, Y., Wang, P., Zhang, A., Qin, Z., Li, Y., Xianyu, Y., Zhang, H. Covalent organic framework-incorporated nanofibrous membrane as an intelligent platform for wound dressing. ACS Appl. Mater. Interfaces 2022, 14, 8680–8692. https://doi.org/10.1021/acsami.1c19754.Search in Google Scholar PubMed
24. Bello, M., Abdullah, F., Rahim Mohd Yusoff, A., Mohd Asyraf Wan Mahmood, W., Yong Chee, T., Ahmad Nizam Nik Malek, N., Binti Jemon, K., Sathishkumar, P. Curcumin-loaded electrospun poly(ɛ-caprolactone) nanofibrous membrane: an efficient and biocompatible wound-dressing material. Mater. Lett. 2022, 315, 131910. https://doi.org/10.1016/j.matlet.2022.131910.Search in Google Scholar
25. Khalili, M., Khalili, A., Bokov, D. O., Golmirzaei, M., Oleneva, M. S., Naghiaei, N., Radmehr, M., Esmaeili, E. Preparation and characterization of bi-layered polycaprolactone/polyurethane nanofibrous scaffold loaded with titanium oxide and curcumin for wound dressing applications. Appl. Phys. A 2022, 128, 497. https://doi.org/10.1007/s00339-022-05646-2.Search in Google Scholar
26. Tsai, K.-D., Lin, J.-C., Yang, S., Tseng, M.-J., Hsu, J.-D., Lee, Y.-J., Cherng, J.-M. Curcumin protects against UVB-induced skin cancers in SKH-1 hairless mouse: analysis of early molecular markers in carcinogenesis, evidence-based complement. Alternative Med. 2012, 2012, 1–11. https://doi.org/10.1155/2012/593952.Search in Google Scholar PubMed PubMed Central
27. Shefa, A. A., Sultana, T., Park, M. K., Lee, S. Y., Gwon, J. G., Lee, B. T. Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater. Des. 2020, 186, 108313. https://doi.org/10.1016/j.matdes.2019.108313.Search in Google Scholar
28. Sidhu, G. S., Singh, A. K., Thaloor, D., Banaudha, K. K., Patnaik, G. K., Srimal, R. C., Maheshwari, R. K. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998, 6, 167–177. https://doi.org/10.1046/j.1524-475X.1998.60211.x.Search in Google Scholar
29. Netam, A., Bhargava, V., Singh, R., Sharma, P. Physico-chemical characterization of ayurvedic swarna bhasma by using SEM, EDAX, XRD and PSA. J. Complement. Med. Res. 2021, 12, 204. https://doi.org/10.5455/jcmr.2021.12.02.23.Search in Google Scholar
30. Datkhile, K. D., Patil, S. R., Patil, M. N., Pratik, P. Studies on phytoconstituents, in vitro Antioxidant, Antibacterial, and cytotoxicity potential of Argemone Mexicana linn (Family: Papaveraceae). J. Nat. Sci. Biol. Med. 2020, 198–205.Search in Google Scholar
31. Jain, S., Krishna Meka, S. R., Chatterjee, K. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed. Mater. 2016, 11, 055007. https://doi.org/10.1088/1748-6041/11/5/055007.Search in Google Scholar PubMed
32. Mikos, A., Temenoff, J. Formation of highly porous biodegradable scaffolds for tissue engineering, Form. Highly Porous Biodegrad. Scaffolds Tissue Eng. 2000, 3, 23–24. https://doi.org/10.4067/S0717-34582000000200003.Search in Google Scholar
33. Dasgupta, N., Ranjan, S. Food Engineering for Developing Food-Grade Nanoemulsions; Springer Nature Singapore Pte Ltd: Singapore, 2018; pp. 83–103.10.1007/978-981-10-6986-4_5Search in Google Scholar
34. Subtaweesin, C., Woraharn, W., Taokaew, S., Chiaoprakobkij, N., Sereemaspun, A., Phisalaphong, M. Characteristics of curcumin-loaded bacterial cellulose films and anticancer properties against malignant melanoma skin cancer cells. Appl. Sci. 2018, 8, 1188. https://doi.org/10.3390/app8071188.Search in Google Scholar
35. Farid, M., Purniawan, A., Rasyida, A., Ramadhani, M., Komariyah, S. Improvement of acoustical characteristics : wideband bamboo based polymer composite. IOP Conf. Ser. Mater. Sci. Eng. 2017, 223, 012021. https://doi.org/10.1088/1757-899X/223/1/012021.Search in Google Scholar
36. Trovati, G., Sanches, E. A., Neto, S. C., Mascarenhas, Y. P., Chierice, G. O. Characterization of polyurethane resins by FTIR, TGA, and XRD. J. Appl. Polym. Sci. 2010, 115, 263–268. https://doi.org/10.1002/app.31096.Search in Google Scholar
37. Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. B Rev. 2010, 16, 371–383. https://doi.org/10.1089/ten.teb.2009.0639.Search in Google Scholar PubMed PubMed Central
38. Yuan, T. T., DiGeorge Foushee, A. M., Johnson, M. C., Jockheck-Clark, A. R., Stahl, J. M. Development of electrospun chitosan-polyethylene oxide/fibrinogen biocomposite for potential wound healing applications. Nanoscale Res. Lett. 2018, 13, 88. https://doi.org/10.1186/s11671-018-2491-8.Search in Google Scholar PubMed PubMed Central
39. Miguel, S., Ribeiro, M., Coutinho, P., Correia, I. Electrospun polycaprolactone/aloe Vera_Chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers 2017, 9, 183. https://doi.org/10.3390/polym9050183.Search in Google Scholar PubMed PubMed Central
40. Rezk, A. I., Lee, J. Y., Son, B. C., Park, C. H., Kim, C. S. Bi-layered nanofibers membrane loaded with titanium oxide and tetracycline as controlled drug delivery system for wound dressing applications. Polymers 2019, 11. https://doi.org/10.3390/polym11101602.Search in Google Scholar PubMed PubMed Central
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Hydrogen resistance and trapping behaviour of a cold-drawn ferritic–pearlitic steel wire
- Effect of pre-torsion on the strength and electrical conductivity of aluminum alloy wire
- The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
- Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering
- Isothermal section of the Ti–Mn–Si ternary system at 600 °C
- NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor
- The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Hydrogen resistance and trapping behaviour of a cold-drawn ferritic–pearlitic steel wire
- Effect of pre-torsion on the strength and electrical conductivity of aluminum alloy wire
- The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
- Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering
- Isothermal section of the Ti–Mn–Si ternary system at 600 °C
- NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor
- The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde