Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
-
Ismaila Diédhiou
, Balla Fall , Cheikh Gaye , Mohamed Lamine Sall , Abdou Karim Diagne Diaw , Diariatou Gningue-Sall , Modou Falland Noureddine Raouafi
Abstract
This review focuses on the trends and challenges, over the last ten years, in the development of electrochemical sensors based on organic conducting polymers and graphene composites for the determination of trace heavy metal ions in water. Some of these materials taken alone still have significant limitations for the selective and ultrasensitive detection of target species. Hence, it has become crucial to develop new composite materials able to overcome these limitations and to improve the sensitivity to heavy metal ions. The properties resulting from the combination of these two types of materials, which increased the electrochemical performance by offering many advantages such as improvement of catalytic activity and conductivity, fast electron transfer kinetics, large surface area and high sensitivity were reviewed. This review also presents in detail various methods (chemical, electrochemical and hydrothermal) used to prepare composites and characterization methods (spectroscopic, microscopic, electrochemical, etc.). The applications of these composites in electroanalysis of heavy metal ions have been discussed and summarized. Also, electrochemical detection methods, particularly those called “Anodic Stripping Voltammetry” have been explained and their uses in the detection of heavy metal ions in natural water have been highlighted, and the results provided.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors are grateful to the International Science Program (ISP), University of Uppsala (Sweden) under Grant to African Network of Electroanalytical Chemists [IPICS/ANEC] and to TWAS, The World Academy of Science for the Advancement of Science in developing countries under No. 16-499RG/CHE/AF/AC_G–FR3240293299.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Nguyen, D. N., Yoon, H. Polymer 2016, 118, 8. https://doi.org/10.3390/polym8040118.Search in Google Scholar PubMed PubMed Central
2. Yang, Y., Yuan, W., Li, S., Yang, X., Xu, J., Jiang, Y. Electrochim. Acta 2015, 165, 323. https://doi.org/10.1016/j.electacta.2015.03.052.Search in Google Scholar
3. Li, X., Zhang, X., Yang, H. Chin. J. Popul. Resour. Environ. 2020, 18, 9. https://doi.org/10.1016/j.cjpre.2021.04.010.Search in Google Scholar
4. Garcia-Cabezon, C., Salvo-Comino, C., Garcia-Hernandez, C., Rodriguez-Mendez, M. L., Martin-Pedrosa, F. Surf. Coat. Technol. 2020, 403, 126395. https://doi.org/10.1016/j.surfcoat.2020.126395.Search in Google Scholar
5. Baker, C. O., Huang, X., Nelson, W., Kaner, R. B. Chem. Soc. Rev. 2017, 46, 1510. https://doi.org/10.1039/C6CS00555A.Search in Google Scholar PubMed
6. Huynh, T. P., Sharma, P. S., Sosnowska, M., D’Souza, F., Kutner, W. Prog. Polym. Sci. 2015, 47, 1. https://doi.org/10.1016/j.progpolymsci.2015.04.009.Search in Google Scholar
7. Song, J. K., Do, K., Koo, J. H., Son, D., Kim, D. H. MRS Bull. 2019, 44, 643. https://doi.org/10.1557/MRS.2019.183.Search in Google Scholar
8. Wu, X., Peng, H. Sci. Bull. 2019, 64, 634. https://doi.org/10.1016/j.scib.2019.04.011.Search in Google Scholar PubMed
9. Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Chevillot-Biraud, A., Oturan, N., Oturan, M. A., Fourdrin, C., Huguenot, D., Aaron, J. J. Environ. Sci. Pollut. Res. 2018, 25, 8581. https://doi.org/10.1007/s11356-017-1111-y.Search in Google Scholar PubMed
10. Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Chevillot-Biraud, A., Oturan, N., Oturan, M. A., Aaron, J. J. Environ. Sci. Pollut. Res. 2017, 24, 21111. https://doi.org/10.1007/s11356-017-9713-y.Search in Google Scholar PubMed
11. Philips, M. F., Gopalan, A. I., Lee, K. P. J. Hazard Mater. 2012, 237–238, 46–54. https://doi.org/10.1016/j.jhazmat.2012.07.069.Search in Google Scholar PubMed
12. Huang, H., Zhu, W., Gao, X., Liu, X., Ma, H. Anal. Chim. Acta 2016, 947, 32. https://doi.org/10.1016/j.aca.2016.10.012.Search in Google Scholar PubMed
13. Zaaba, N. I., Foo, K. L., Hashim, U., Tan, S. J., Liu, W. W., Voon, C. H. Procedia Eng. 2017, 184, 469. https://doi.org/10.1016/j.proeng.2017.04.118.Search in Google Scholar
14. Zhang, Y., Shen, J., Li, H., Wang, L., Cao, D., Feng, X., Liu, Y., Ma, Y., Wang, L.. Chem. Rec. 2016, 16, 273. https://doi.org/10.1002/tcr.201500236.Search in Google Scholar PubMed
15. Kim, S., Hwang, B.. Mater. Des. 2018, 160, 572–577. https://doi.org/10.1016/j.matdes.2018.09.051.Search in Google Scholar
16. Singh, E., Meyyappan, M., Nalwa, H. S. ACS Appl. Mater. Interfaces 2017, 9, 34544. https://doi.org/10.1021/acsami.7b07063.Search in Google Scholar PubMed
17. Zhou, M., Guo, S. ChemCatChem 2015, 7, 2744. https://doi.org/10.1002/cctc.201500198.Search in Google Scholar
18. Zhong, F., Liu, Z., Han, Y., Guo, Y. Electroanalysis 2019, 31, 1182. https://doi.org/10.1002/elan.201900048.Search in Google Scholar
19. Zunita, M., Makertiharta, I. G. B. N., Irawanti, R., Prasetya, N., Wenten, I. G. IOP Conf. Ser. Mater. Sci. Eng. 2018, 395, 012005. https://doi.org/10.1088/1757-899X/395/1/012005.Search in Google Scholar
20. Zunita, M., Irawanti, R., Koesmawati, T. A., Lugito, G., Wentena, I. G. Chem. Eng. Trans. 2020, 82, 415. https://doi.org/10.3303/CET2082070.Search in Google Scholar
21. Zunita, M., Hidalgo, M. Membranes 2021, 11, 269. https://doi.org/10.3390/membranes11040269.Search in Google Scholar PubMed PubMed Central
22. Zhao, H., Gao, H., Li, B., Song, Z., Hu, T., Liu, F. Mater. Lett. 2019, 252, 215. https://doi.org/10.1016/j.matlet.2019.05.059.Search in Google Scholar
23. Huang, L., Santiago, D., Loyselle, P., Dai, L. Small 2018, 14, 1800879. https://doi.org/10.1002/smll.201800879.Search in Google Scholar PubMed
24. US EPA. Drinking Water Regulations | US EPA, 2001. https://www.epa.gov/dwreginfo/drinking-water-regulations (accessed Jul 14, 2022).Search in Google Scholar
25. Cotruvo, J. A. J. Am. Water Works Assn 2017, 109, 44. https://doi.org/10.5942/jawwa.2017.109.0087.Search in Google Scholar
26. Gumpu, M. B., Sethuraman, S., Krishnan, U. M., Rayappan, J. B. B. Sens. Actuators, B 2015, 213, 515. https://doi.org/10.1016/j.snb.2015.02.122.Search in Google Scholar
27. Bansod, B. K., Kumar, T., Thakur, R., Rana, S., Singh, I. Biosens. Bioelectron. 2017, 94, 443. https://doi.org/10.1016/j.bios.2017.03.031.Search in Google Scholar PubMed
28. Afkhami, A., Soltani-Felehgari, F., Madrakian, T., Ghaedi, H., Rezaeivala, M. Anal. Chim. Acta 2013, 771, 21. https://doi.org/10.1016/j.aca.2013.02.031.Search in Google Scholar PubMed
29. Zhang, L., Peng, D., Liang, R. P., Qiu, J. D. TrAC, Trends Anal. Chem. 2018, 102, 280. https://doi.org/10.1016/j.trac.2018.02.010.Search in Google Scholar
30. Sadeghi, M. H., Tofighy, M. A., Mohammadi, T. Chemosphere 2020, 253, 126647. https://doi.org/10.1016/j.chemosphere.2020.126647.Search in Google Scholar PubMed
31. Kong, Q., Shi, X., Ma, W., Zhang, F., Yu, T., Zhao, F., Zhao, D., Wei, C. J. Hazard Mater. 2021, 415, 125690. https://doi.org/10.1016/j.jhazmat.2021.125690.Search in Google Scholar PubMed
32. Ahmad, H., Liu, C. J. Hazard Mater. 2021, 415, 125661. https://doi.org/10.1016/j.jhazmat.2021.125661.Search in Google Scholar PubMed
33. Wang, X., Xu, Y., Li, Y., Li, Y., Li, Z., Zhang, W., Zou, X., Shi, J., Huang, X., Liu, C., Li, W. Food Chem. 2021, 357, 129762. https://doi.org/10.1016/j.foodchem.2021.129762.Search in Google Scholar PubMed
34. Gupta, P., Rahm, C. E., Jiang, D., Gupta, V. K., Heineman, W. R., Justin, G., Alvarez, N. T. Anal. Chim. Acta 2021, 1155, 338353. https://doi.org/10.1016/j.aca.2021.338353.Search in Google Scholar PubMed
35. Ngoc Bui, M. P., Li, C. A., Han, K. N., Pham, X. H., Seong, G. H. Analyst 2012, 137, 1888. https://doi.org/10.1039/C2AN16020J.Search in Google Scholar
36. Zhang, B., Chen, J., Zhu, H., Yang, T., Zou, M., Zhang, M., Du, M. Electrochim. Acta 2016, 196, 422. https://doi.org/10.1016/j.electacta.2016.02.163.Search in Google Scholar
37. Wei, Y., Gao, C., Meng, F-L., Li, H-H., Wang, L., Liu, J-H., Huang, X-J. J. Phys. Chem. C 2012, 116, 1034. https://doi.org/10.1021/jp209805c.Search in Google Scholar
38. Kumar, R., Barakat, M. A., Taleb, M. A., Seliem, M. K. J. Clean. Prod. 2020, 268, 122290. https://doi.org/10.1016/j.jclepro.2020.122290.Search in Google Scholar
39. Dai, H., Wang, N., Wang, D., Ma, H., Lin, M. Chem. Eng. J. 2016, 299, 150. https://doi.org/10.1016/j.cej.2016.04.083.Search in Google Scholar
40. Diarisso, A., Fall, M., Raouafi, N. Environ. Sci. Water Res. Technol. 2018, 4, 1024. https://doi.org/10.1039/C8EW00139A.Search in Google Scholar
41. Akhtar, M., Tahir, A., Zulfiqar, S., Hanif, F., Warsi, M. F., Agboola, P. O., Shakir, I. Synth. Met. 2020, 265, 116410. https://doi.org/10.1016/j.synthmet.2020.116410.Search in Google Scholar
42. Javaid, A., Khalid, O., Shakeel, A., Noreen, S. J. Energy Storage 2021, 33, 102168. https://doi.org/10.1016/j.est.2020.102168.Search in Google Scholar
43. Sun, Y., Jiao, L., Han, D., Wang, F., Zhang, P., Li, H., Niu, L. Mater. Des. 2020, 188, 108440. https://doi.org/10.1016/j.matdes.2019.108440.Search in Google Scholar
44. Lo, M., Diaw, A. K. D., Gningue-Sall, D., Oturan, M. A., Chehimi, M. M., Aaron, J. J. Luminescence 2019, 34, 489. https://doi.org/10.1002/bio.3626.Search in Google Scholar PubMed
45. Zhu, G., Ge, Y., Dai, Y., Shang, X., Yang, J., Liu, J. Electrochim. Acta 2018, 268, 202. https://doi.org/10.1016/j.electacta.2018.02.101.Search in Google Scholar
46. Oularbi, L., Turmine, M., El Rhazi, M. J. Solid State Electrochem. 2017, 21, 3289. https://doi.org/10.1007/s10008-017-3676-2.Search in Google Scholar
47. Jaiswal, N., Tiwari, I., Foster, C. W., Banks, C. E. Electrochim. Acta 2017, 227, 255. https://doi.org/10.1016/j.electacta.2017.01.007.Search in Google Scholar
48. Wang, Q-H., Yu, L-J., Liu, Y., Lin, L., Lu, R., Zhu, J-P., He, L., Lu, Z-L. Talanta 2017, 165, 709. https://doi.org/10.1016/j.talanta.2016.12.044.Search in Google Scholar PubMed
49. Cesana, R., Ferreira, J. H. A., Gonçalves, J. M., Gomes, D., Nakamura, M., Peres, R. M., Toma, H. E., Canevari, T. C. Mater. Sci. Eng., B 2021, 267, 115084. https://doi.org/10.1016/j.mseb.2021.115084.Search in Google Scholar
50. Deshmukh, M. A., Shirsat, M. D., Ramanaviciene, A., Ramanavicius, A. Crit. Rev. Anal. Chem. 2018, 48, 293. https://doi.org/10.1080/10408347.2017.1422966.Search in Google Scholar PubMed
51. Deshmukh, M. A., Celiesiute, R., Ramanaviciene, A., Shirsat, M. D., Ramanavicius, A. Electrochim. Acta 2018, 259, 930. https://doi.org/10.1016/j.electacta.2017.10.131.Search in Google Scholar
52. Deshmukh, M. A., Patil, H. K., Bodkhe, G. A., Yasuzawa, M., Koinkar, P., Ramanavicius, A., Pandey, S., Shirsat, M. D. Colloids Surf., A 2018, 537, 303. https://doi.org/10.1016/j.colsurfa.2017.10.026.Search in Google Scholar
53. Deshmukh, M. A., Patil, H. K., Bodkhe, G. A., Yasuzawa, M., Koinkar, P., Ramanaviciene, A., Shirsat, M. D., Ramanavicius, A. Sens. Actuators, B 2018, 260, 331. https://doi.org/10.1016/j.snb.2017.12.160.Search in Google Scholar
54. Deshmukh, M. A., Bodkhe, G. A., Shirsat, S., Ramanavicius, A., Shirsat, M. D. Front. Chem. 2018, 6, 451. https://doi.org/10.3389/fchem.2018.00451.Search in Google Scholar PubMed PubMed Central
55. Ricci, A., Olejar, K. J., Parpinello, G. P., Kilmartin, P. A. A. Versari 2015, 50, 407. https://doi.org/10.1080/05704928.2014.1000461.Search in Google Scholar
56. Mallakpour, S., Azimi, F. In: Thomas, S., Daniel, S., Eds. 2020, pp 231.10.1016/B978-0-08-101903-0.00006-4Search in Google Scholar
57. Bokobza, L. Polymers 2017, 10, 7. https://doi.org/10.3390/polym10010007.Search in Google Scholar PubMed PubMed Central
58. Aziz, M., Ismail, A. F. Membr. Charact. 2017, 81. https://doi.org/10.1016/B978-0-444-63776-5.00005-X.Search in Google Scholar
59. Li, S., Chen, Y., He, X., Mao, X., Zhou, Y., Xu, J., Yang, Y. Nanoscale Res. Lett. 2019, 14, 1. https://doi.org/10.1186/s11671-019-3051-6.Search in Google Scholar PubMed PubMed Central
60. Chinnathambi, A., Alahmadi, T. A. Chemosphere 2021, 272, 129851. https://doi.org/10.1016/j.chemosphere.2021.129851.Search in Google Scholar PubMed
61. Eltayeb, N. E., Khan, A. J. Mater. Res. Technol. 2020, 9, 10459. https://doi.org/10.1016/j.jmrt.2020.07.031.Search in Google Scholar
62. Mohammed, A., Abdullah, A. Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX; Băile Govora: Romania, 2018; pp 78. https://fluidas.ro/hervex/proceedings2018/77-85.pdf.Search in Google Scholar
63. Abd Mutalib, M., Rahman, M. A., Othman, M. H. D., Ismail, A. F., Jaafar, J. Membr. Charact. 2017, 161. https://doi.org/10.1016/B978-0-444-63776-5.00009-7.Search in Google Scholar
64. Tang, C. Y., Yang, Z. Membr. Charact. 2017, 145. https://doi.org/10.1016/B978-0-444-63776-5.00008-5.Search in Google Scholar
65. Johnson, D., Oatley-Radcliffe, D. L., Hilal, N. Membr. Charact. 2017, 115. https://doi.org/10.1016/B978-0-444-63776-5.00007-3.Search in Google Scholar
66. Pleshakova, T. O., Bukharina, N. S., Archakov, A. I., Ivanov, Y. D. Int. J. Mol. Sci. 2018, 19, 1142. https://doi.org/10.3390/ijms19041142.Search in Google Scholar PubMed PubMed Central
67. Palash, M. L., Mitra, S., Harish, S., Thu, K., Saha, B. B. Int. J. Refrig. 2019, 105, 72. https://doi.org/10.1016/j.ijrefrig.2018.08.017.Search in Google Scholar
68. Barakzehi, M., Montazer, M., Sharif, F., Norby, T., Chatzitakis, A. Electrochim. Acta 2019, 305, 187. https://doi.org/10.1016/j.electacta.2019.03.058.Search in Google Scholar
69. Bora, C., Dolui, S. K. Polymer 2012, 53, 923. https://doi.org/10.1016/j.polymer.2011.12.054.Search in Google Scholar
70. Shi, X., Yu, Y., Yang, Q., Hong, X. Appl. Surf. Sci. 2020, 524, 146397. https://doi.org/10.1016/j.apsusc.2020.146397.Search in Google Scholar
71. Dudkiewicz, A., Lehner, A., Chaudhry, Q., Molhave, K., Allmaier, G., Tiede, K., Boxall, A. B. A., Hofmann, P., Lewis, J. Particuology 2019, 45, 49. https://doi.org/10.1016/j.partic.2018.05.007 https://doi.org/10.1016/j.partic.2018.05.007.10.1016/j.partic.2018.05.007Search in Google Scholar
72. Cai, Z., Xiong, H., Zhu, Z., Huang, H., Li, L., Huang, Y., Yu, X. Synth. Met. 2017, 227, 100. https://doi.org/10.1016/j.synthmet.2017.03.012.Search in Google Scholar
73. Wei, D., Lin, X., Li, L., Shang, S., Yuen, M. C-W., Yan, G., Yu, X. Soft Matter 2013, 9, 2832. https://doi.org/10.1039/C2SM27253A.Search in Google Scholar
74. Stylianou, A., Lekka, M., Stylianopoulos, T. Nanoscale 2018, 10, 20930. https://doi.org/10.1039/C8NR06146G.Search in Google Scholar
75. Braet, F., Taatjes, D. J., Wisse, E. Semin. Cell Dev. Biol. 2018, 73, 13–30. https://doi.org/10.1016/j.semcdb.2017.07.001.Search in Google Scholar PubMed
76. Chlanda, A., Walejewska, E., Kowiorski, K., Heljak, M., Swieszkowski, W., Lipińska, L. Micron 2021, 146, 103072. https://doi.org/10.1016/j.micron.2021.103072.Search in Google Scholar PubMed
77. Bulbul, Y. E., Uzunoglu, T., Dilsiz, N., Yildirim, E., Ates, H. Polym. Test. 2020, 92, 106877. https://doi.org/10.1016/j.polymertesting.2020.106877.Search in Google Scholar
78. Boguzaite, R., Ratautaite, V., Mikoliunaite, L., Pudzaitis, V., Ramanaviciene, A., Ramanavicius, A. J. Electroanal. Chem. 2021, 886, 115132. https://doi.org/10.1016/j.jelechem.2021.115132.Search in Google Scholar
79. Deshmukh, M. A., Gicevicius, M., Ramanaviciene, A., Shirsat, M. D., Viter, R., Ramanavicius, A. Sens. Actuators, B 2017, 248, 527. https://doi.org/10.1016/j.snb.2017.03.167.Search in Google Scholar
80. Fall, B., Diaw, A. K. D., Fall, M., Sall, M. L., Lo, M., Gningue-Sall, D., Thotiyl, M. O., Maria, H. J., Kalarikkal, N., Thomas, S. Mater. Today Commun. 2021, 26, 102005. https://doi.org/10.1016/J.MTCOMM.2020.102005.Search in Google Scholar
81. Lo, M., Seydou, M., Bensghaïer, A., Pires, R., Gningue-Sall, D., Aaron, J-J., Mekhalif, Z., Delhalle, J., Chehimi, M. M. Sensors 2020, 20, 580. https://doi.org/10.3390/S20030580.Search in Google Scholar PubMed PubMed Central
82. Seck, S. M., Charvet, S., Fall, M., Baudrin, E., Geneste, F., Lejeune, M., Benlahsen, M. J. Electroanal. Chem. 2015, 738, 154. https://doi.org/10.1016/j.jelechem.2014.11.013.Search in Google Scholar
83. Lo, M., Diaw, A. K. D., Gningue-Sall, D., Aaron, J. J., Oturan, M. A., Chehimi, M. M. Electrochem. Commun. 2017, 77, 14. https://doi.org/10.1016/j.elecom.2017.02.002.Search in Google Scholar
84. Kim, T., Ramadoss, A., Saravanakumar, B., Veerasubramani, G. K., Kim, S. J. Appl. Surf. Sci. 2016, 370, 452. https://doi.org/10.1016/j.apsusc.2016.02.147.Search in Google Scholar
85. Thakurathi, M., Gurung, E., Cetin, M. M., Thalangamaarachchige, V. D., Mayer, M. F., Korzeniewski, C., Quitevis, E. L. Electrochim. Acta 2018, 259, 245. https://doi.org/10.1016/j.electacta.2017.10.149.Search in Google Scholar
86. Mohammadi, I., Afshar, A., Ahmadi, S. Ceram. Int. 2016, 42, 12105. https://doi.org/10.1016/j.ceramint.2016.04.142.Search in Google Scholar
87. Larfaillou, S., Guy-Bouyssou, D., Le Cras, F., Franger, S. J. Power Sources 2016, 319, 139. https://doi.org/10.1016/j.jpowsour.2016.04.057.Search in Google Scholar
88. García-González, R., Fernández Abedul, M. T. Lab. Methods Dyn. Electroanal 2020, 119. https://doi.org/10.1016/B978-0-12-815932-3.00012-7.Search in Google Scholar
89. Cruz-Manzo, S., Greenwood, P., Chen, R. J. Electrochem. Soc. 2017, 164, A1446. https://doi.org/10.1149/2.0431707jes.Search in Google Scholar
90. Adán-Más, A., Silva, T. M., Guerlou-Demourgues, L., Montemor, M. F. Electrochim. Acta 2018, 289, 47. https://doi.org/10.1016/j.electacta.2018.08.077.Search in Google Scholar
91. Brett, C. M. A. Molecules 2022, 27, 1497. https://doi.org/10.3390/molecules27051497.Search in Google Scholar PubMed PubMed Central
92. Usman, F., Dennis, J. O., Seong, K. C., Ahmed, A. Y., Meriaudeau, F., Ayodele, O. B., Tobi, A. R., Rabih, A. A. S., Yar, A. Results Phys. 2019, 15, 102690. https://doi.org/10.1016/j.rinp.2019.102690.Search in Google Scholar
93. Foo, C. Y., Huang, N. M., Lim, H. N., Jiang, Z. T., Altarawneh, M. Eur. Polym. J. 2019, 117, 227. https://doi.org/10.1016/j.eurpolymj.2019.05.021.Search in Google Scholar
94. Hou, Z., Zou, S., Li, J. J. Alloys Compd. 2020, 827, 154390. https://doi.org/10.1016/j.jallcom.2020.154390.Search in Google Scholar
95. Bhardwaj, P., Grace, A. N. Diam. Relat. Mater. 2020, 106, 107871. https://doi.org/10.1016/j.diamond.2020.107871.Search in Google Scholar
96. Kafle, B. P. Chem. Anal. Mater. Charact. by Spectrophotometry. Elsevier, 2020, 147. https://doi.org/10.1016/B978-0-12-814866-2.00006-3.Search in Google Scholar
97. Jorge, F. E., Pimenta, L. T. G., Marques, M. de F. V. Mater. Sci. Eng., B 2021, 263, 114851.10.1016/j.mseb.2020.114851Search in Google Scholar
98. Kumar, P., Bora, C., Kumar, B., Sukul, P. K., Das, S. Synth. Met. 2020, 264, 116381. https://doi.org/10.1016/j.synthmet.2020.116381.Search in Google Scholar
99. Moyseowicz, A., Gryglewicz, G. Compos. B Eng. 2019, 159, 4. https://doi.org/10.1016/j.compositesb.2018.09.069.Search in Google Scholar
100. He, X., Liu, Q., Liu, J., Li, R., Zhang, H., Chen, R., Wang, J. Chem. Eng. J. 2017, 325, 134. https://doi.org/10.1016/j.cej.2017.05.043.Search in Google Scholar
101. Abuali, M., Arsalani, N., Ahadzadeh, I. J. Energy Storage 2020, 32, 101694. https://doi.org/10.1016/j.est.2020.101694.Search in Google Scholar
102. Linzhi, L. I., Shujuan, G. A. O. Mater. Today Commun. 2020, 24, 100993. https://doi.org/10.1016/j.mtcomm.2020.100993.Search in Google Scholar
103. Chen, J., Wang, Y., Cao, J., Liao, L., Liu, Y., Zhou, Y., Ouyang, J-H., Jia, D., Wang, M., Li, X., Li, Z. Electrochim. Acta 2020, 361, 137036. https://doi.org/10.1016/j.electacta.2020.137036.Search in Google Scholar
104. Ghanbari, K., Moloudi, M. Anal. Biochem. 2016, 512, 91. https://doi.org/10.1016/j.ab.2016.08.014.Search in Google Scholar PubMed
105. Promphet, N., Rattanarat, P., Rangkupan, R., Chailapakul, O., Rodthongkum, N. Sens. Actuators, B 2015, 207, 526. https://doi.org/10.1016/j.snb.2014.10.126.Search in Google Scholar
106. Seenivasan, R., Chang, W. J., Gunasekaran, S. ACS Appl. Mater. Interfaces 2015, 7, 15935. https://doi.org/10.1021/acsami.5b03904.Search in Google Scholar PubMed
107. Rong, R., Zhao, H., Gan, X., Chen, S., Quan, X. Nano 2017, 12, 1750008. https://doi.org/10.1142/S1793292017500084.Search in Google Scholar
108. Rehman, A. U., Ikram, M., Kan, K., Zhao, Y., Zhang, W. J., Zhang, J., Liu, Y., Wang, Y., Du, L., Shi, K. Sens. Actuators, B 2018, 274, 285. https://doi.org/10.1016/j.snb.2018.08.004.Search in Google Scholar
109. Ruecha, N., Rodthongkum, N., Cate, D. M., Volckens, J., Chailapakul, O., Henry, C. S. Anal. Chim. Acta 2015, 874, 40. https://doi.org/10.1016/j.aca.2015.02.064.Search in Google Scholar PubMed
110. Muralikrishna, S., Nagaraju, D. H., Balakrishna, R. G., Surareungchai, W., Ramakrishnappa, T., Shivanandareddy, A. B. Anal. Chim. Acta 2017, 990, 67. https://doi.org/10.1016/j.aca.2017.09.008.Search in Google Scholar PubMed
111. Chong, W. S., Gan, S. X., Al-Tuwirit, H. M., Chong, W. Y., Lim, C. S., Ahmad, H. Mater. Chem. Phys. 2020, 249, 122970. https://doi.org/10.1016/j.matchemphys.2020.122970.Search in Google Scholar
112. Kaliyaraj Selva Kumar, A., Zhang, Y., Li, D., Compton, R. G. Electrochem. Commun. 2020, 121, 106867. https://doi.org/10.1016/j.elecom.2020.106867.Search in Google Scholar
113. Baig, N., Sajid, M., Saleh, T. A. TrAC, Trends Anal. Chem. 2019, 111, 47. https://doi.org/10.1016/j.trac.2018.11.044.Search in Google Scholar
114. Gong, Q., Han, H., Yang, H., Zhang, M., Sun, X., Liang, Y., Liu, Z., Zhang, W., Qiao, J. J. Materiomics. 2019, 5, 313. https://doi.org/10.1016/j.jmat.2019.03.004.Search in Google Scholar
115. Aydın, E. B., Aydın, M., Sezgintürk, M. K. Biosens. Bioelectron. 2018, 121, 80. https://doi.org/10.1016/j.bios.2018.09.008.Search in Google Scholar PubMed
116. Lv, M., Wang, X., Li, J., Yang, X., Zhang, C., Yang, J., Hu, H. Electrochim. Acta 2013, 108, 412. https://doi.org/10.1016/j.electacta.2013.06.099.Search in Google Scholar
117. Alves, G. M. S., Rocha, L. S., Soares, H. M. V. M. Talanta 2017, 175, 53. https://doi.org/10.1016/j.talanta.2017.06.077.Search in Google Scholar PubMed
118. Govindhan, M., Adhikari, B. R., Chen, A. RSC Adv. 2014, 4, 63741. https://doi.org/10.1039/C4RA10399H.Search in Google Scholar
119. Zhang, W., Xu, Y., Tahir, H. E., Zou, X. Chem. Eng. J. 2017, 309, 305. https://doi.org/10.1016/j.cej.2016.10.081.Search in Google Scholar
120. Lu, Y., Liang, X., Xu, J., Zhao, Z., Tian, G. Sens. Actuators, B 2018, 273, 1146. https://doi.org/10.1016/j.snb.2018.06.104.Search in Google Scholar
121. Mouhamed, N., Cheikhou, K., Rokhy, G. E. M., Bagha, D. M., Guèye, M. D. C., Tzedakis, T. Am. J. Anal. Chem. 2018, 9, 171. https://doi.org/10.4236/ajac.2018.93015.Search in Google Scholar
122. Wang, X., Qi, Y., Shen, Y., Yuan, Y., Zhang, L., Zhang, C., Sun, Y. Sens. Actuators, B 2020, 310, 127756. https://doi.org/10.1016/j.snb.2020.127756.Search in Google Scholar
123. Ye, W., Li, Y., Wang, J., Li, B., Cui, Y., Yang, Y., Qian, G. J. Solid State Chem. 2020, 281, 121032. https://doi.org/10.1016/j.jssc.2019.121032.Search in Google Scholar
124. Sall, M. L., Fall, B., Diédhiou, I., Dièye, E., Lo, M., Diaw, A. K. D., Gningue-Sall, D., Raouafi, N., Fall, M. Chem. Africa 2020, 33, 499. https://doi.org/10.1007/s42250-020-00157-0.Search in Google Scholar
125. Salih, F. E., Ouarzane, A., El Rhazi, M. Arab. J. Chem. 2017, 10, 596. https://doi.org/10.1016/j.arabjc.2015.08.021.Search in Google Scholar
126. Nurhayati, E., Juang, Y., Rajkumar, M., Huang, C., Hu, C-C. Separ. Purif. Technol. 2015, 156, 1047. https://doi.org/10.1016/j.seppur.2015.07.022.Search in Google Scholar
127. Romih, T., Hočevar, S. B., Kononenko, V., Drobne, D. Sens. Actuators, B 2017, 238, 1277. https://doi.org/10.1016/j.snb.2016.09.090.Search in Google Scholar
128. Suvina, V., Krishna, S. M., Nagaraju, D. H., Melo, J. S., Balakrishna, R. G. Mater. Lett. 2018, 232, 209. https://doi.org/10.1016/j.matlet.2018.08.096.Search in Google Scholar
129. Arulraj, A. D., Devasenathipathy, R., Chen, S. M., Vasantha, V. S., Wang, S. F. J. Colloid Interface Sci. 2016, 483, 268. https://doi.org/10.1016/j.jcis.2016.08.026.Search in Google Scholar PubMed
130. Hanif, F., Tahir, A., Akhtar, M., Waseem, M., Haider, S., Aboud, M. F. A., Shakir, I., Imran, M., Warsi, M. F. Synth. Met. 2019, 257, 116185. https://doi.org/10.1016/j.synthmet.2019.116185.Search in Google Scholar
131. Palanisamy, S., Thangavelu, K., Chen, S-M., Velusamy, V., Chang, M-H., Chen, T-W., Al-Hemaid, F. M. A., Ali, M. A., Ramaraj, S. K. Sens. Actuators, B 2017, 243, 888. https://doi.org/10.1016/j.snb.2016.12.068.Search in Google Scholar
132. Toghan, A., Abd-Elsabour, M., Abo-Bakr, A. M. Sens. Actuators, A A. 2021, 322, 112603. https://doi.org/10.1016/j.sna.2021.112603.Search in Google Scholar
133. Dedelaite, L., Kizilkaya, S., Incebay, H., Ciftci, H., Ersoz, M., Yazicigil, Z., Oztekin, Y., Ramanaviciene, A., Ramanavicius, A. Colloids Surf., A 2015, 483, 279. https://doi.org/10.1016/j.colsurfa.2015.05.054.Search in Google Scholar
134. Oztekin, Y., Yazicigil, Z., Solak, A. O., Ustundag, Z., Okumus, A., Kilic, Z., Ramanaviciene, A., Ramanavicius, A. Sens. Actuators, B 2012, 166–167, 117. https://doi.org/10.1016/j.snb.2012.01.025.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
- Original Papers
- Complex dielectric, electric modulus, impedance, and optical conductivity of Sr3−x Pb x Fe2TeO9 (x = 1.50, 1.88 and 2.17)
- Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
- Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel
- Fabrication of magnesium oxide nanoparticles using Eucalyptus tereticornis seed extract and their characterisation
- Greener route for synthesis of cerium oxide and Fe-doped cerium oxide nanoparticles using acacia concinna fruit extract
- Phase equilibria of Ni–Al–Pd and Ni–Cr–Pd ternary systems and Ni–Al–Cr–Pd quaternary system at 1423 K
- Effect of grain size on oxidation behaviour of Ag-20Cu-30Cr alloys in 0.1 MPa pure O2 at 700 and 800 °C
- News
- DGM – Deutsche Gesellschaft für Materialkunde