Home Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
Article
Licensed
Unlicensed Requires Authentication

Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni

  • Francisco Evaristo Uchôa Reis , Luis Paulo Mourão dos Santos , Lorena Braga Moura , Mirela Oliveira de Castro , Pedro de Lima Neto , Jorge Luiz Cardoso ORCID logo EMAIL logo and Hamilton Ferreira Gomes de Abreu
Published/Copyright: June 28, 2023
Become an author with De Gruyter Brill

Abstract

The mechanical properties and corrosion resistance of annealed superferritic stainless steel model alloy 25Cr–6Mo–5Ni were investigated in 0.6 M NaCl solution. The microstructure consisted of a ferrite matrix and eutectoid phase with a lamellar structure distributed at grain boundaries and within the ferrite grains with a spherical morphology. Tensile and impact results suggested brittle behavior of the model alloy. Fractography analysis revealed typical cleavage facets, river patterns and micro-cracks at grain boundaries and across the ferrite grains. Pitting corrosion began within the eutectoid phase, which contains in chrome depletion zones. Electrochemical impedance spectroscopy measurements suggest that the breakdown of passive films was more susceptible in the eutectoid phase.


Corresponding author: Jorge Luiz Cardoso, Department of Metallurgical and Materials Engineering, Federal University of Ceará, Humberto Monte Av. s/n – Pici, Fortaleza, CE, 60440-593, Brazil, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to thank the Brazilian agencies CNPq, CAPES and FUNCAP for financial support and to the FAI (Fundição de Aço Inox Ltda) company from Brazil for providing the SFSS model alloy 25Cr-6Mo-5Ni used in this research. Luis P. M. Santos thanks the CAPES scholarship (88882.463158/2019-01) PNPD/CAPES.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Tverberg, J., Blessman, E. Condenser Technology, Seminar and Conference, 2002.Search in Google Scholar

2. Ng, P. G., Clarke, E., Khoo, C. A., Fourlaris, G. Mater. Sci. Technol. 2006, 22, 852–858. https://doi.org/10.1179/174328406X91140.Search in Google Scholar

3. Olubambi, P. A., Potgieter, J. H., Cornish, L. Mater. Des. 2009, 30, 1451–1457. https://doi.org/10.1016/j.matdes.2008.08.019.Search in Google Scholar

4. Villanueva, D. M. E., Junior, F. C. P., Plaut, R. L., Padilha, A. F. Mater. Sci. Technol. 2006, 22, 1098–1104. https://doi.org/10.1179/174328406X109230.Search in Google Scholar

5. Guo, T. M., Zhang, D. C., Han, C. S., Hui, Z., Zhao, L. M. Adv. Mater. Res. 2012, 476, 263–268. https://doi.org/10.4028/www.scientific.net/AMR.476-478.263.Search in Google Scholar

6. Guo, T. M., Zhang, D. C., Hui, Z., Han, C. S., Zhao, L. M. Adv. Mater. 2012, 415, 800–806. https://doi.org/10.4028/www.scientific.net/AMR.415-417.800.Search in Google Scholar

7. Selecka, M., Salak, A., Danninger, H. J. Mater. Process. Technol. 2003, 143, 910–915. https://doi.org/10.1016/j.jmatprotec.2003.10.001.Search in Google Scholar

8. Shulga, A. V. Eng. Fail. Anal. 2015, 56, 512–519. https://doi.org/10.1016/j.engfailanal.2014.11.019.Search in Google Scholar

9. Carboga, C., Aktas, B., Kurt, B. J. Mater. Eng. Perform. 2020, 29, 3120–3126. https://doi.org/10.1007/s11665-020-04796-9.Search in Google Scholar

10. Vasconcelos, I. F., Tavares, S. S., Reis, F. E. U., Abreu, H. F. J. Mater. Sci. 2009, 44, 293–299. https://doi.org/10.1007/s10853-008-3064-5.Search in Google Scholar

11. Moura, L. B., Guimarães, R. F., Abreu, H. F. G. d., Miranda, H. C. d., Tavares, S. S. M. Mater. Res. 2012, 15, 277–284. https://doi.org/10.1590/S1516-14392012005000024.Search in Google Scholar

12. Moura, L. B., de Abreu, H. F. G., Negreiros, Y. S. J. Mater. Res. Technol. 2013, 2, 282–287. https://doi.org/10.1016/j.jmrt.2013.02.013.Search in Google Scholar

13. ASTM. Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels; ASTM International, 2013.Search in Google Scholar

14. A. E92-82 Standard Test Method for Vickers Hardness of Metallic Materials, 1982.Search in Google Scholar

15. Beres, L. Weld. J. 1998, 77, 273–276.Search in Google Scholar

16. Karlsson, L., Norden, H., Odelius, H. Acta Metall. 1988, 36, 1–12. https://doi.org/10.1016/0001-6160(88)90023-5.Search in Google Scholar

17. Andrade, T. F., Kliauga, A. M., Plaut, R. L., Padilha, A. F. Mater. Charact. 2008, 59, 503–507. https://doi.org/10.1016/j.matchar.2007.03.006.Search in Google Scholar

18. Molinari, A., Pieczonka, T., Kazior, J., Gialanella, S., Straffelini, G. Metall. Mater. Trans. A 2000, 31, 1497–1506. https://doi.org/10.1007/s11661-000-0160-9.Search in Google Scholar

19. Dos Santos, J. R., Herculano, L. F. G., Cardoso, J. L., da Silva, M. J. G. Int. J. Mech. Res. 2022, 113, 327–335. https://doi.org/10.1515/ijmr-2021-8465.Search in Google Scholar

20. Song, G. Corros. Sci. 2005, 47, 1953–1987. https://doi.org/10.1016/j.corsci.2004.09.007.Search in Google Scholar

21. Magnabosco, R., Alonso-Falleiros, N. Corrosion 2005, 61, 130–136. https://doi.org/10.5006/1.3278167.Search in Google Scholar

22. Alonso-Falleiros, N., Hakim, A., Wolynec, S. Corrosion 1999, 55, 443–448. https://doi.org/10.5006/1.3284005.Search in Google Scholar

23. Li, R., Ferreira, M. G. S., Anjos, M., Vilar, R. Surf. Coat. Technol. 1997, 88, 96–102. https://doi.org/10.1016/S0257-8972(96)02895-2.Search in Google Scholar

24. Pardo, A., Merino, M., Carboneras, M., Coy, A., Arrabal, R. Corros. Sci. 2007, 49, 510–525. https://doi.org/10.1016/j.corsci.2006.06.004.Search in Google Scholar

25. do Nascimento, A. M., Ierardi, M. C. F., Kina, A. Y., Tavares, S. S. M. Mater. Charact. 2008, 59, 1736–1740. https://doi.org/10.1016/j.matchar.2008.03.015.Search in Google Scholar

26. Kim, J. K., Kim, Y. H., Lee, B. H., Kim, K. Y. Electrochim. Acta 2011, 56, 1701–1710. https://doi.org/10.1016/j.electacta.2010.08.042.Search in Google Scholar

27. Da Silva, P. S. G., Costa, A. N. C., Mattos, O. R., Correia, A. N., De Lima-Neto, P. J. Appl. Electrochem. 2006, 36, 375–383. https://doi.org/10.1007/s10800-005-9083-x.Search in Google Scholar

28. Nana, S., Cortie, M. B. Metall. Mater. Trans. A 1996, 27, 2436–2444. https://doi.org/10.1007/bf02652337.Search in Google Scholar

29. Koutsoukis, T., Konstantinidis, K., Papadopoulou, E. G., Kokkonidis, P., Fourlaris, G. Mater. Sci. Technol. 2011, 27, 943–950. https://doi.org/10.1179/026708310X12712410311938.Search in Google Scholar

30. Moura, L. B., Guimaraes, R. F., de Abreu, H. F. G., de Miranda, H. C., Tavares, S. S. M. Mater. Res-Ibero-Am. J. 2012, 15, 277–284. https://doi.org/10.1590/S1516-14392012005000024.Search in Google Scholar

31. Zhang, X., Fan, L., Xu, Y., Li, J., Xiao, X., Jiang, L. Mater. Des. 2015, 65, 682–689. https://doi.org/10.1016/j.matdes.2014.09.074.Search in Google Scholar

32. A. A240 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, 2004.Search in Google Scholar

Received: 2021-07-01
Accepted: 2023-02-27
Published Online: 2023-06-28
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8447/pdf?lang=en
Scroll to top button