Startseite Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Critical systematic investigation of the Cd–Ce system: phase stability and Gibbs energies of formation and equilibria via thermodynamic description

  • Jinming Liu ORCID logo EMAIL logo , Xiaolong Huang , Quan Du , Lingyu Ouyang EMAIL logo , Jian Xiao und Yong Li
Veröffentlicht/Copyright: 10. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The CALPHAD (CAlculation of PHAse Diagrams) technique is used in the critical remodeling of the Cd–Ce system. On the basis of new experimental data in the literature, the excess Gibbs energies of the solution phase expression (liquid, bcc, fcc, and hcp_A3) are described using the Redlich–Kister equation. Four compounds (Cd3Ce, Cd6Ce, Cd11Ce, and Cd17Ce2) are treated as stochiometric compounds. Two intermetallic compounds (Cd2Ce and Cd58Ce13), which exhibit a little homogeneity range, are treated as a two-sublattice model. Two thermodynamic models are used for the CdCe and bcc. Model I is to model the compound CdCe and bcc-Ce separately. Model II is to use the formula (Cd, Ce)0.5(Cd, Ce)0.5(Va)3 to describe the compound CdCe with a CsCl-type structure (B2) and cope with the disorder–order transition from bcc-A2 to bcc-B2. The present work shows that four eutectic reactions, three peritectic reactions, two eutectoid reactions, one peritectoid transformation and three congruent reactions are observed, and the stoichiometric compound Cd17Ce2 is only stable from 804 to 882 °C in the Cd–Ce system.


Corresponding authors: Jinming Liu, School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China, E-mail: ; and Lingyu Ouyang, School of Mechanical and Electronic Engineering, Jiangxi College of Applied Technology, Ganzhou, 341000, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: Authors are grateful to the National Natural Science Foundation of China (No. 51961014), and the Science Foundation of Ganzhou City (No. [2018] 50; [2020] 60), and the Innovative Talent Programof Ganzhou City (No. [2019] 60), and Science and Technology Research Project of Jiangxi Provincial Department of Education (No. GJJ191346).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Olander, D. J. Nucl. Mater. 2009, 389, 1. https://doi.org/10.1016/j.jnucmat.2009.01.297.Suche in Google Scholar

2. Conocar, O., Douyere, N., Glatz, J., Lacquement, J., Malmbecke, R. Nucl. Sci. Eng. 2006, 153, 253. https://doi.org/10.13182/NSE06-A2611.Suche in Google Scholar

3. Kurata, M., Sakamura, Y., Hijikata, T., Kinoshita, K. J. Nucl. Mater. 1995, 227, 110. https://doi.org/10.1016/0022-3115(95)00146-8.Suche in Google Scholar

4. Okamoto, H. J. Phase Equilibria. 1999, 20, 636. https://doi.org/10.1361/105497199770335181.Suche in Google Scholar

5. Massalski, T. B., Ed. Binary Alloy Phase Diagrams; ASM International: Materials Park, OH, 1990, 2nd ed.Suche in Google Scholar

6. Gschneidner, K. A., Calderwood, F. W. Bull. Alloys Phase Diagrams 1988, 9, 16. https://doi.org/10.1007/BF02877449.Suche in Google Scholar

7. Kurata, M., Sakamura, Y. J. Phase Equilibria. 2001, 22, 232. https://doi.org/10.1361/105497101770338707.Suche in Google Scholar

8. Skołyszewska-Kühberger, B., Reichmann, T. L., Ganesan, R., Ipser, H. Calphad 2014, 44, 14. https://doi.org/10.1016/j.calphad.2013.07.005.Suche in Google Scholar PubMed PubMed Central

9. Skołyszewska-Kühberger, B., Reichmann, T. L., Marker, M. C. J., Effenberger, H. S., Ipser, H. J. Phase Equilibria Diffus. 2016, 37, 186. https://doi.org/10.1007/s11669-015-0441-z.Suche in Google Scholar

10. Reichmann, T. L., Richter, K. W., Delsante, S., Borzone, G., Ipser, H. Calphad 2014, 47, 56. https://doi.org/10.1016/j.calphad.2014.06.005.Suche in Google Scholar PubMed PubMed Central

11. Liu, J., Li, F., Guo, C., Li, Q., Liu, J., Zhang, X., Xiao, J. J. Phase Equilibria Diffus. 2019, 40, 732. https://doi.org/10.1007/s11669-019-00759-3.Suche in Google Scholar

12. Reichmann, T. L., Ipser, H. Metall. Mater. Trans. A 2014, 45, 1171. https://doi.org/10.1007/s11661-013-2065-4.Suche in Google Scholar

13. Reichmann, T. L., Ganesan, R., Ipser, H. J. Alloys Compd. 2014, 610, 676. https://doi.org/10.1016/j.jallcom.2014.05.062.Suche in Google Scholar PubMed PubMed Central

14. Iandelli, A., Ferro, R. Gazz. Chim. Ital. 1954, 84, 463.Suche in Google Scholar

15. Gschneidner, K. A. Rare Earth Alloys; D. Van Nostrand Company Ltd: London, 1961.Suche in Google Scholar

16. Johnson, I., Anderson, K. E., Blomquist, R. A. Trans. Am. Soc. Metall. 1966, 59, 352.Suche in Google Scholar

17. Canepa, F., Costa, G. A., Franceschi, E. A. Lanthan. Actin. Res. 1985, 1, 41.Suche in Google Scholar

18. Bayanov, A., Serebrennikov, V. V. Zh. Fiz. Khim. 1965, 39, 717.Suche in Google Scholar

19. Johnson, I., Yonco, R. M. Metall. Trans. 1970, 1, 905. https://doi.org/10.1007/BF02811772.Suche in Google Scholar

20. Colinet, C., Pasturel, A. Thermodynamic properties of metallic systems. In Handbook on the Physics and Chemistry of Rare Earths—Lanthanides/Actinides: Physics-II; Gschneidner K. A. Jr., Eyring L., Lander G. H., Choppin G. R., Eds. Elsevier Science B.V., Amsterdam, 1994; pp. 479–631.10.1016/S0168-1273(05)80063-7Suche in Google Scholar

21. Shibata, H., Hayashi, H., Akabori, M., Arai, Y., Kurata, M. J. Phys. Chem. Solids 2014, 75, 972. https://doi.org/10.1016/j.jpcs.2014.04.004.Suche in Google Scholar

22. Castrillejo, Y., Bermejo, M. R., Arocas, P. D., Martínez, A. M., Barrado, E. J. Electroanal. Chem. 2005, 579, 343.10.1016/j.jelechem.2005.03.001Suche in Google Scholar

23. Castrillejo, Y., Bermejo, R., Martínez, A. M., Barrado, E., Arocas, P. D. J. Nucl. Mater. 2007, 360, 32. https://doi.org/10.1016/j.jnucmat.2006.08.011.Suche in Google Scholar

24. Reichmann, T. L., Richter, K. W., Delsante, S., Borzone, G., Ipser, H. Calphad 2014, 47, 56. https://doi.org/10.1016/j.calphad.2014.06.005.Suche in Google Scholar PubMed PubMed Central

25. Reichmann, T. L., Effenberger, H. S., Ipser, H. PLoS One 2014, 9, 1. https://doi.org/10.1371/journal.pone.0094025.Suche in Google Scholar PubMed PubMed Central

26. Jain, A., Ong, S. P. APL Mater. 2013, 1, 11002. https://doi.org/10.17188/1207032.Suche in Google Scholar

27. Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Rühl, S., Wolverton, C. npj Comput. Mater. 2015, 1, 15010. https://doi.org/10.1038/npjcompumats.2015.10.Suche in Google Scholar

28. Dinsdale, A. T. Calphad 1991, 15, 317. https://doi.org/10.1016/0364-5916(91)90030-N.Suche in Google Scholar

29. Redlich, O., Kister, A. T. Ind. Eng. Chem. 1948, 40, 345. https://doi.org/10.1021/ie50458a036.Suche in Google Scholar

30. Ansara, I., Dupin, N., Lukas, H. L., Sundman, B. J. Alloys Compd. 1997, 247, 20. https://doi.org/10.1016/S0925-8388(96)02652-7.Suche in Google Scholar

31. Sundman, B., Jansson, B., Andersson, J.-O. Calphad 1985, 9, 153. https://doi.org/10.1016/0364-5916(85)90021-5.Suche in Google Scholar

Received: 2021-01-20
Accepted: 2023-09-18
Published Online: 2023-11-10
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8214/pdf?lang=de
Button zum nach oben scrollen