Startseite An indirect approach to measure glass transition temperature in metallic glasses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An indirect approach to measure glass transition temperature in metallic glasses

  • H. J. Jin und K. Lu EMAIL logo
Veröffentlicht/Copyright: 19. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Glass transition behavior of metallic glasses under some extraordinary conditions (such as under high pressures) remains unexplored. Conventional measurements of glass transition temperature, Tg, are very difficult to perform under these extraordinary circumstances. In the present paper, we introduce an indirect approach to characterize glass transition, using enthalpy recovery experiments. With annealing deeply relaxed glassy samples and subsequent DSC measurements, a variation of enthalpy change upon heating with annealing temperature can be obtained. The variation of enthalpy change, a signature of glass transition, was found to correlate well with the directly measured DSC curves for the glass transition. This unique method was successfully applied in determining Tg of several metallic glasses under hydrostatic high pressures and compression stresses.


Prof. K. Lu Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang 110016, People’s Republic of China Fax: +86 24 2399 8660

Dedicated to Prof. Dr. Ferdinand Sommer on the occasion of his 65th birthday


  1. Financial support from the National Natural Science Foundation of China (Grant No. 50021101) is gratefully acknowledged.

Reference

[1] F. Sommer: Mater. Sci. Eng. A 226 (1997) 757.10.1016/S0921-5093(97)80080-9Suche in Google Scholar

[2] W.L. Johnson: MRS Bulletin 24 (1999) 42.10.1557/S0883769400053252Suche in Google Scholar

[3] A. Inoue, T. Zhang, T. Masumoto: Mater. Trans. JIM 31 (1990) 177.10.2320/matertrans1989.31.177Suche in Google Scholar

[4] Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto: Scripta Mater. 37 (1997) 431.10.1016/S1359-6462(97)00105-XSuche in Google Scholar

[5] R. Busch, E. Bakke, W.L. Johnson: Acta Mater. 46 (1998) 4725.10.1016/S1359-6454(98)00122-0Suche in Google Scholar

[6] H. Chen, Y. He, G.J. Shieflet, S.J. Poon: Nature 367 (1994) 541.10.1038/367541a0Suche in Google Scholar

[7] T.G. Nieh, J. Wadsworth, C.T. Liu, T. Ohkubo, Y. Hirotsu: Acta Mater. 49 (2001) 2887.10.1016/S1359-6454(01)00218-XSuche in Google Scholar

[8] F. Ye, K. Lu: Acta Mater. 47 (1999) 2449.10.1016/S1359-6454(99)00104-4Suche in Google Scholar

[9] K. Samwer, R. Busch, W.L. Johnson: Phys. Rev. Lett. 82 (1999) 580.10.1103/PhysRevLett.82.580Suche in Google Scholar

[10] K. Russew, F. Sommer: J. Non-Cryst. Solids 319 (2003) 289.10.1016/S0022-3093(03)00006-1Suche in Google Scholar

[11] J. Jackle: Rep. Prog. Phys. 49 (1986) 171.10.1088/0034-4885/49/2/002Suche in Google Scholar

[12] B. Zappel, F. Sommer: Mater. Sci. Eng. A 179 (1994) 283.10.1016/0921-5093(94)90211-9Suche in Google Scholar

[13] J.R. Stevens, R.W. Coakley, K.W. Chau, J.L. Hunt: J. Chem. Phys. 110 (1999) 10978.10.1063/1.479035Suche in Google Scholar

[14] M. Paluch, S. Hensel-Bielowka, J. Ziolo: J. Chem. Phys. 110 (1999) 10978.10.1063/1.479035Suche in Google Scholar

[15] H.J. Jin, X.J. Gu, P. Wen, L.B. Wang, K. Lu: Acta Mater. 51 (2003) 6219.10.1016/S1359-6454(03)00445-2Suche in Google Scholar

[16] H.S. Chen: J. Non-Cryst. Solids 46 (1981) 289.10.1016/0022-3093(81)90007-7Suche in Google Scholar

[17] H.W. Kui, D. Turnbull: J. Non-Cryst. Solids 94 (1987) 62.10.1016/S0022-3093(87)80261-2Suche in Google Scholar

[18] A. Inoue, T. Zhang, T. Masumoto: J. Non-Cryst. Solids 150 (1992) 396.10.1016/0022-3093(92)90160-LSuche in Google Scholar

[19] R. Bruning, K. Samwer: Phys. Rev. B 46 (1992) 11318.10.1103/PhysRevB.46.11318Suche in Google Scholar

[20] H.J. Jin, F. Zhou, L.B. Wang, K. Lu: Scripta Mater. 44 (2001) 1083.10.1016/S1359-6462(01)00656-XSuche in Google Scholar

[21] H.J. Jin, P. Wen, K. Lu: Appl. Phys. Lett. 83 (2003) 3284.10.1063/1.1621076Suche in Google Scholar

[22] M. Paluch: J. Chem. Phys. 115 (2001) 10029.10.1063/1.1415442Suche in Google Scholar

[23] J. Gapinski, M. Paluch, A. Patkowski: Phys. Rev. E 66 (2002) 011501.10.1103/PhysRevE.66.011501Suche in Google Scholar PubMed

[24] A. Patkowski, M. Paluch, H. Kriegs: J. Chem. Phys. 117 (2002) 2192.10.1063/1.1489902Suche in Google Scholar

[25] H.J. Jin, J. Wen, K. Lu: Acta Mater. 53 (2005) 3013.10.1016/j.actamat.2005.03.015Suche in Google Scholar

Received: 2005-10-05
Accepted: 2005-11-20
Published Online: 2022-01-19

© 2006 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
  4. Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
  5. Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
  6. Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
  7. Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
  8. Structure-induced order – disorder transformation in Cd – Na liquid alloys
  9. An indirect approach to measure glass transition temperature in metallic glasses
  10. Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
  11. Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
  12. Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
  13. The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
  14. Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
  15. Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
  16. Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
  17. Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
  18. Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
  19. Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
  20. Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
  21. Low temperature deposition with inductively coupled plasma
  22. Instructions for Authors
  23. Personal/Personelles
  24. Press/Presse
  25. Conferences/Konferenzen
  26. Frontmatter
  27. Editorial
  28. Editorial
  29. BBasic
  30. Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
  31. Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
  32. Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
  33. Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
  34. Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
  35. Structure-induced order – disorder transformation in Cd – Na liquid alloys
  36. An indirect approach to measure glass transition temperature in metallic glasses
  37. Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
  38. Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
  39. Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
  40. The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
  41. Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
  42. Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
  43. Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
  44. Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
  45. Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
  46. Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
  47. Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
  48. AApplied
  49. Low temperature deposition with inductively coupled plasma
  50. Notifications/Mitteilungen
  51. Instructions for Authors
  52. Personal/Personelles
  53. Press/Presse
  54. Conferences/Konferenzen
Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0065/html
Button zum nach oben scrollen