Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
-
Xinlin Yan
, Xing-Qiu Chen , A. Grytsiv , V. T. Witusiewicz , P. Rogl, R. Podloucky
, V. Pomjakushin und G. Giester
Abstract
Site preference and thermodynamic properties of the ternary Laves phase Ti(Fe1 –xAlx)2 with MgZn2-type have been studied employing Rietveld refinement of X-ray and neutron powder diffraction data, X-ray single crystal data, and isoperibolic drop calorimetry techniques. A detailed relation between lattice parameters of Ti(Fe1– xAlx)2 and the Al content in the Laves phase has been presented. The Rietvelt refinement revealed that Ti atoms occupy the 4f site in the MgZn2-type, whilst Fe and Al atoms randomly share the 2a and 6 θ site. Heat of formation has been measured for Ti(Fe0.5Al0.5)2. For the ab initio density functional theory applications, a large number of structural models were investigated to calculate the concentration dependent (Al) heats of formation, magnetic structural stabilities, lattice parameters, and site occupancies, which are in good agreement with experiment.
-
This work was supported by the Austrian National Science Foundation FWF projects no. P16957, P16778 and was partially performed at the spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland. The authors also thank the Austrian-Chinese scientific technical exchange program under OEAD project VII.A.16 for a research grant (X. Yan).
References
[1] G. Sauthoff: Intermetallics, Weinheim, Germany VCH (1995).10.1002/9783527615414Suche in Google Scholar
[2] J.D. Livingston: Phys. Status. Sol. A 131 (1992) 415.10.1002/pssa.2211310215Suche in Google Scholar
[3] Y. Yamada, K. Nakamura, K. Kitagawa, G. Obara, T. Nakamura: Journal of Magnetism and Magnetic Materials 285 (2005) 28.10.1016/j.jmmm.2004.07.013Suche in Google Scholar
[4] H. Yamada, H. Shimizu: Physica B Condensed Matter 363 (2005) 32.10.1016/j.physb.2005.03.001Suche in Google Scholar
[5] Y. Yamada, K. Kuroda, K.I. Matono, A. Sakata: J. Phys. Soc. Jap. 69 (2000) 225.10.1143/JPSJ.69.225Suche in Google Scholar
[6] G.D. Sandrock: J. Alloys Compd. 293– 295 (1999) 877.10.1016/S0925-8388(99)00384-9Suche in Google Scholar
[7] R.C. Bowman Jr., B. Fultz: MRS Bull. 27 (2002) 688.10.1557/mrs2002.223Suche in Google Scholar
[8] H.M. Wang, F. Cao, L.X. Cai, H.B. Tang, R.L. Yu, L.Y. Zhang: Acta Mater. 51(20) (2003) 6319.10.1016/S1359-6454(03)00465-8Suche in Google Scholar
[9] S. Mrowec, K. Przybylski: Oxid. Met. 23 (1985) 107.10.1007/BF00659899Suche in Google Scholar
[10] G. Ghosh, in: G. Petzow, G. Effenberg (Ed.), Ternary Alloys, Vol. 5, VCH, Weinheim (1992) 456– 469.Suche in Google Scholar
[11] V. Raghavan: J. Phase Equilibria 23(4) (2002) 367.10.1361/105497102770331613Suche in Google Scholar
[12] M. Palm, G. Inden, N. Thomas: J. Phase Equilibria 16 (1995) 209.10.1007/BF02667305Suche in Google Scholar
[13] V.Ya. Markiv, V.V. Burnashova, V.P. Ryabov: Akad. Nauk Ukr. SSR, Metallofiz. 46 (1973) 103.Suche in Google Scholar
[14] W. Brückner, K. Kleinstück, G.E.R. Schulze: Phys. Stat. Sol. 23 (1967) 475.10.1002/pssb.19670230206Suche in Google Scholar
[15] P.A. Suprinenko, V.J. Markiv, T.M. Cvetkova: Ukrains’kij Fizichnij Zhurnal 29 (1984) 622.Suche in Google Scholar
[16] A.E. Dwiht: J. Less-Comm. Met. 34 (1974) 279.10.1016/0022-5088(74)90170-2Suche in Google Scholar
[17] H. Mabuchi, H. Nagayama, H. Tsuda, T. Matsui, K. Mori: Materials-Transactions, JIM. 41(6) (2000) 733.10.2320/matertrans1989.41.733Suche in Google Scholar
[18] E.F. Wassermann, B. Rellinghaus, B. Rossel, W.J. Pepperhoff: J. Magn. Magn. Mater. 190 (1998) 289.10.1016/S0304-8853(98)00298-4Suche in Google Scholar
[19] J. Koeble, M. Huth: Phys. Rev. B 66 (2002) 144414.10.1103/PhysRevB.66.144414Suche in Google Scholar
[20] Nonius Kappa CCD Program Package COLLECT, DENZO, SCALEPACK, SORTAV, Nonius Delft, The Netherlands, 1998.Suche in Google Scholar
[21] G.M. Sheldrick: SHELXL-97, Program for Crystal Structure Refinement. University of Göttingen, Germany; Windows version by McArdle, Natl. Univ. Ireland, Galway (1997).Suche in Google Scholar
[22] P. Fischer, G. Frey, M. Koch, M. Koennecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf, R. Buerge, U. Greuter, S. Bondt, E. Berruyer: Physica B 276– 278 (2000) 146.10.1016/S0921-4526(99)01399-XSuche in Google Scholar
[23] T. Roisnel, J. Rodriguez-Carvajal: Materials Science Forum 378– 381 (2001) 118.10.4028/www.scientific.net/MSF.378-381.118Suche in Google Scholar
[24] X.Q. Chen, V.T. Witusiewicz, R. Podloucky, P. Rogl, F. Sommer: Acta Mater. 51 (2003) 1239.10.1016/S1359-6454(02)00497-4Suche in Google Scholar
[25] A.T. Dinsdale: CALPHAD 15 (1991) 317.10.1016/0364-5916(91)90030-NSuche in Google Scholar
[26] G. Kresse, J. Furthmüller: Comput. Mater. Sci. 6 (1996) 15; Phys. Rev. B 54 (1996) 11169.10.1016/0927-0256(96)00008-0Suche in Google Scholar
[27] G. Kresse, D. Joubert: Phys. Rev. B 59 (1999) 1758.10.1103/PhysRevB.59.1758Suche in Google Scholar
[28] J.P. Perdew, Y. Wang: Phys. Rev. B 45 (1992) 13244.10.1103/PhysRevB.45.13244Suche in Google Scholar
[29] H.J. Monkhorst, J.D. Pack: Phys. Rev. B 13 (1976) 5188.10.1103/PhysRevB.13.5188Suche in Google Scholar
[30] T.B. Massalski: Binary Alloy Phase Diagrams, 2nd edition, ASM International, Metals Park, OH (1990).Suche in Google Scholar
[31] V.T. Witusiewicz, F. Sommer, E. Mittemeijer: Metal. Trans. B 34 (2003) 209.10.1007/s11663-003-0008-ySuche in Google Scholar
[32] A. Grytsiv, X.-Q. Chen, V.T. Witusiewicz, P. Rogl, R. Podloucky, V. Pomjakushin, D. Maccio, A. Saccone, G. Giester, F. Sommer: Z. Krist. (submitted).Suche in Google Scholar
[33] X.Q. Chen, W. Wolf, R. Podloucky, P. Rogl, M. Marsman: Europhys. Lett. 67 (2004) 807.10.1209/epl/i2004-10119-4Suche in Google Scholar
[34] X.Q. Chen, W. Wolf, R. Podloucky, P. Rogl: J. Alloys Compd. 383 (2004) 228.10.1016/j.jallcom.2004.04.066Suche in Google Scholar
[35] X.Q. Chen, W. Wolf, R. Podloucky, P. Rogl, M. Marsman: Phys. Rev. B 72 (2005) 054440.10.1103/PhysRevB.72.054440Suche in Google Scholar
[36] M. Nassik, F.Z. Chrifi-Alaoui, K. Mahdouk, J.C. Gachon: J. Alloy Compd. 350 (2003) 151.10.1016/S0925-8388(02)00975-1Suche in Google Scholar
[37] J. Braun, M. Ellner: J. Alloys Compd. 309 (2000) 118.10.1016/S0925-8388(00)01031-8Suche in Google Scholar
[38] O. Kubaschewski, C.B. Alcock, P.J. Spencer: Materials Thermo-chemistry, 6th ed, Oxford: Pergamon Press (1993).Suche in Google Scholar
[39] K.C.H. Kumar, P. Wollants, L. Delaey: CALPHAD 18 (1994) 223.10.1016/0364-5916(94)90028-0Suche in Google Scholar
[40] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, in: F.R. de Boer, D.G. Pettifor (Eds.), Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam (1988).Suche in Google Scholar
[41] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Glady-shevskii: TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Springer-Verlag, Berlin, Heidelberg, 1994.10.1007/978-3-662-10644-0Suche in Google Scholar
© 2006 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
- Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
- Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
- Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
- Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
- Structure-induced order – disorder transformation in Cd – Na liquid alloys
- An indirect approach to measure glass transition temperature in metallic glasses
- Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
- Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
- Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
- The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
- Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
- Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
- Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
- Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
- Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
- Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
- Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
- Low temperature deposition with inductively coupled plasma
- Instructions for Authors
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen
- Frontmatter
- Editorial
- Editorial
- BBasic
- Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
- Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
- Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
- Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
- Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
- Structure-induced order – disorder transformation in Cd – Na liquid alloys
- An indirect approach to measure glass transition temperature in metallic glasses
- Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
- Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
- Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
- The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
- Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
- Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
- Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
- Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
- Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
- Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
- Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
- AApplied
- Low temperature deposition with inductively coupled plasma
- Notifications/Mitteilungen
- Instructions for Authors
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
- Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
- Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
- Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
- Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
- Structure-induced order – disorder transformation in Cd – Na liquid alloys
- An indirect approach to measure glass transition temperature in metallic glasses
- Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
- Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
- Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
- The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
- Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
- Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
- Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
- Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
- Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
- Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
- Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
- Low temperature deposition with inductively coupled plasma
- Instructions for Authors
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen
- Frontmatter
- Editorial
- Editorial
- BBasic
- Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
- Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
- Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
- Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
- Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
- Structure-induced order – disorder transformation in Cd – Na liquid alloys
- An indirect approach to measure glass transition temperature in metallic glasses
- Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
- Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
- Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
- The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
- Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
- Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
- Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
- Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
- Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
- Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
- Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
- AApplied
- Low temperature deposition with inductively coupled plasma
- Notifications/Mitteilungen
- Instructions for Authors
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen