Home Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
Article
Licensed
Unlicensed Requires Authentication

Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems

  • Gerhard Wilde EMAIL logo and Shantanu V. Madge
Published/Copyright: January 19, 2022
Become an author with De Gruyter Brill

Abstract

Several Pd-base alloys display a large tendency for glass formation that renders them especially suitable for investigations concerning (metastable) equilibrium properties of the deeply undercooled liquid including the glass transition, since the detrimental interference of premature crystallization can be avoided rather easily compared to other alloy systems. Here, thermodynamic, dynamic, and transport properties were analysed and compared to an Al-rich marginal glass former in the context of a possible relation between fragility, thermodynamic excess and kinetic stability against crystallization. Additionally, the possibility for liquid-phase separation occurring in the undercooled state of bulk glass-forming alloys is analysed as a function of thermal history, and critically discussed with respect of alternative mechanisms that are often summarized as ‘short-range ordering’.


Gerhard Wilde Institute of Nanotechnology Forschungszentrum Karlsruhe P.O.B. 36 40, D-76021 Karlsruhe, Germany Tel.: +49 7247 82 6414 Fax: +49 7247 82 6368

Dedicated to Prof. Dr. Ferdinand Sommer on the occasion of his 65th birthday


  1. One of the author gratefully acknowledges many stimulating discussions and collaborations with Prof. F. Sommer over the years. Additionally, the authors are indebted for the collaboration and the discussions with following scientists: Dr. G. P. Görler, Dr. J. Hamann, Dr. I.-R. Lu, Prof. J. H. Perepezko, Dr. H. Rösner, Dr. R. Willnecker. Last but not least, the support by the DFG concerning several aspects of the presented work is most gratefully acknowledged.

References

[1] W. Klement, R.H. Willens, P. Duwez: Nature 187 (1960) 869.10.1038/187869b0Search in Google Scholar

[2] A.J. Drehman, A.L. Greer, D. Turnbull: Appl. Phys. Lett. 41 (1982) 716.10.1063/1.93645Search in Google Scholar

[3] A. Inoue, T. Zhang, T. Masumoto: Mater. Trans. JIM 31 (1990) 425.10.2320/matertrans1989.31.425Search in Google Scholar

[4] A. Peker, W.L. Johnson: Appl. Phys. Lett. 63 (1993) 2342.10.1063/1.110520Search in Google Scholar

[5] I.R. Lu, G. Wilde, G.P. Görler, R. Willnecker: J. Non-Cryst. Solids 250–252 (1999) 577.10.1016/S0022-3093(99)00135-0Search in Google Scholar

[6] G. Wilde, G.P. Görler, R. Willnecker, G. Dietz: Appl. Phys. Lett. 65 (1994) 397.10.1063/1.112313Search in Google Scholar

[7] C.A. Angell: J. Phys. Chem. Solids 49 (1988) 863.10.1016/0022-3697(88)90002-9Search in Google Scholar

[8] R. Busch: JOM 7 (2000) 39.10.1007/s11837-000-0160-7Search in Google Scholar

[9] A. Inoue: Acta Mater. 48 (2000) 279.10.1016/S1359-6454(99)00300-6Search in Google Scholar

[10] R. Busch, E. Bakke, W.L. Johnson: Acta Mater. 46 (1998) 4725.10.1016/S1359-6454(98)00122-0Search in Google Scholar

[11] C.A. Angell: Science 267 (1995) 1924.10.1126/science.267.5206.1924Search in Google Scholar

[12] R. Busch, W. Liu, W.L. Johnson: J. Appl. Phys. 83 (1998) 4134.10.1063/1.367167Search in Google Scholar

[13] R. Busch: J. Alloys Comp., submitted.Search in Google Scholar

[14] A.Q. Tool, C.G. Eichlin: J. Amer. Ceram. Soc. 14 (1931) 276.10.1111/j.1151-2916.1931.tb16602.xSearch in Google Scholar

[15] H.N. Ritland: J. Amer. Ceram. Soc. 37 (1954) 370.10.1111/j.1151-2916.1954.tb14053.xSearch in Google Scholar

[16] G.Wilde, J.H. Perepezko: Mat. Res. Soc. Symp. Proc. 554 (1999) 217.10.1557/PROC-554-217Search in Google Scholar

[17] G. Wilde, G.P. Görler, R. Willnecker, H.J. Fecht: J. Appl. Phys. 87 (2000) 1141.10.1063/1.371991Search in Google Scholar

[18] P.A. Crozier: Ultramicroscopy 58 (1995) 157.10.1016/0304-3991(94)00201-WSearch in Google Scholar

[19] G. Wilde: J. Non-Cryst. Solids 307–310 (2002) 853.10.1016/S0022-3093(02)01533-8Search in Google Scholar

[20] R.N. Singh, F. Sommer: Z. Metallkde. 83 (1992) 553.10.1515/ijmr-1992-830710Search in Google Scholar

[21] J. Schmid, F. Sommer: J. Alloys Comp. 266 (1 –2) (1998) 216.10.1016/S0925-8388(97)00460-XSearch in Google Scholar

[22] A. Inoue: Jpn. J. Appl. Phys. 27 (1988) L1579.10.1143/JJAP.27.L1579Search in Google Scholar

[23] B.A. Mueller, J.H. Perepezko: Metall. Trans. 18a (1987) 1143.10.1007/BF02668565Search in Google Scholar

[24] F.H. Stillinger: Science 267 (1995) 1935.10.1126/science.267.5206.1935Search in Google Scholar

[25] G. Wilde: Appl. Phys. Lett. 79 (2001) 1986.10.1063/1.1406145Search in Google Scholar

[26] G. Wilde, I.-R. Lu, R. Willnecker: Mat. Sci. Eng. A 375 (2004) 417.10.1016/j.msea.2003.10.218Search in Google Scholar

[27] D.W. Davidson, R.H. Cole: J. Chem. Phys. 18 (1950) 1417.10.1063/1.1747496Search in Google Scholar

[28] P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl: Contemp. Phys. 41 (2000) 15.10.1080/001075100181259Search in Google Scholar

[29] G. Wilde: Mat. Res. Soc. Symp. Proc. Vol. 644 (2001) L3.3.1.10.1557/PROC-644-L3.3Search in Google Scholar

[30] J. Jäckle: Phys. Bl. 52 (1996) 351.10.1002/phbl.19960520406Search in Google Scholar

[31] I.-R. Lu: Thesis, University of Ulm, Germany, 2002.Search in Google Scholar

[32] A.I. Taub, F. Spaepen: Acta Met. 28 (1980) 1781.10.1016/0001-6160(80)90031-0Search in Google Scholar

[33] G. Wilde, H. Rösner, N. Boucharat, J. Hamann, W.S. Tong, J.H. Perepezko: Proc. Mat. Res. Soc. Symp. 806 (2004) 33.10.1557/PROC-806-MM1.7Search in Google Scholar

[34] D.B. Miracle: Nature Mater. 3 (2004) 697.10.1038/nmat1219Search in Google Scholar PubMed

[35] D. Ma, H. Tan, D. Wang, Y. Li, E. Ma: Appl. Phys. Lett. 86 (2005) 191906.10.1063/1.1922570Search in Google Scholar

[36] S. Schneider, P. Thiyagarajan, W.L. Johnson: Appl. Phys. Lett. 68 (1996) 493.10.1063/1.116377Search in Google Scholar

[37] A.A. Kündig, M. Ohnuma, T. Ohkubo, K. Hono: Acta Mater. 53 (2005) 2091.10.1016/j.actamat.2005.01.022Search in Google Scholar

[38] H.S. Chen: Mater. Sci. Eng. 23 (1976) 151.10.1016/0025-5416(76)90185-3Search in Google Scholar

[39] M. Oehring: Z. Metallkunde 80 (1989) 1.10.1515/ijmr-1989-800101Search in Google Scholar

[40] A.R. Yavari, K. Osamura, H. Okuda, Y. Anemia: Phys. Rev. B 37 (1988) 7759.10.1103/PhysRevB.37.7759Search in Google Scholar

[41] A.R. Yavari, S. Hamar-Thibault, H.R. Sinning: Scripta Metall. 22 (1988) 1231.10.1016/S0036-9748(88)80137-6Search in Google Scholar

[42] H.G. Read, K. Hono, A.P. Tsai, A. Inoue: Mater. Sci. Eng. A 226 (1997) 453.10.1016/S0921-5093(97)80056-1Search in Google Scholar

[43] C.W. Yuen, H.W. Kui: J. Mater. Res. 13 (1998) 3034.10.1557/JMR.1998.0415Search in Google Scholar

[44] H.W. Ngai, C.C. Leung, W.H. Guo, H.W. Kui: J. Mater. Res. 16 (2001) 797.10.1557/JMR.2001.0111Search in Google Scholar

[45] C.C. Leung, W.H. Guo, H.W. Kui: Appl. Phys. Lett. 77 (2000) 64.10.1063/1.126878Search in Google Scholar

[46] H.A. Davies, in: F.E. Luborsky (Ed.), Amorphous Metallic Alloys. Butterworths, London, 1983. p. 11.Search in Google Scholar

[47] S.V. Madge, H. Rösner, G. Wilde: Scripta Mater. 53 (2005) 1147.10.1016/j.scriptamat.2005.07.020Search in Google Scholar

[48] G. Barut, P. Pissis, R. Pelster, G. Nimtz: Phys. Rev. Lett. 80 (1998) 3543.10.1103/PhysRevLett.80.3543Search in Google Scholar

[49] B.Y. Boucher: J. Non-Cryst. Solids. 7 (1972) 277.10.1016/0022-3093(72)90028-2Search in Google Scholar

[50] W.L. Johnson, in: S.T. Picraux, W.J. Choyke (Eds.), Metastable Materials Formation by Ion Implantation. Proc. Mater. Res. Soc. Annual Meeting: North-Holland, Amsterdam, 1982. p. 183.Search in Google Scholar

[51] R. Ray, R. Hasegawa, C.P. Chou, L.A. Davis: Scripta Metall. 11 (1977) 973.10.1016/0036-9748(77)90249-6Search in Google Scholar

[52] R.W. Cahn, A.L. Greer, in: R.W. Cahn, P. Haasen (Eds.), Metastable States of Alloys. Physical Metallurgy, 4th edition: Elsevier Science BV, 1996. p. 1724.10.1016/B978-044489875-3/50024-7Search in Google Scholar

[53] G. Kumar, T. Ohkubo, K. Hono: Mater. Sci. Eng. A, submitted.Search in Google Scholar

[54] E. Ma: personal communication (2005).Search in Google Scholar

[55] D. Turnbull: Contemp. Phys. 10 (1969) 473.10.1080/00107516908204405Search in Google Scholar

Received: 2005-10-06
Accepted: 2005-11-22
Published Online: 2022-01-19

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
  4. Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
  5. Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
  6. Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
  7. Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
  8. Structure-induced order – disorder transformation in Cd – Na liquid alloys
  9. An indirect approach to measure glass transition temperature in metallic glasses
  10. Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
  11. Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
  12. Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
  13. The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
  14. Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
  15. Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
  16. Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
  17. Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
  18. Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
  19. Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
  20. Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
  21. Low temperature deposition with inductively coupled plasma
  22. Instructions for Authors
  23. Personal/Personelles
  24. Press/Presse
  25. Conferences/Konferenzen
  26. Frontmatter
  27. Editorial
  28. Editorial
  29. BBasic
  30. Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
  31. Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
  32. Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
  33. Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
  34. Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
  35. Structure-induced order – disorder transformation in Cd – Na liquid alloys
  36. An indirect approach to measure glass transition temperature in metallic glasses
  37. Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
  38. Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
  39. Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
  40. The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
  41. Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
  42. Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
  43. Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
  44. Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
  45. Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
  46. Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
  47. Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
  48. AApplied
  49. Low temperature deposition with inductively coupled plasma
  50. Notifications/Mitteilungen
  51. Instructions for Authors
  52. Personal/Personelles
  53. Press/Presse
  54. Conferences/Konferenzen
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0066/html
Scroll to top button