Startseite Recent progress in the area of bulk metallic glasses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Recent progress in the area of bulk metallic glasses

  • Jörg F. Löffler EMAIL logo
Veröffentlicht/Copyright: 11. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Bulk metallic glasses (BMGs) form a new class of alloys which can be manufactured amorphously at a cooling rate of less than 100 K/s and in dimensions of several centimeters. Because of their particular characteristics, these glassy materials have great potential for deployment as structural and functional materials. The mechanical, magnetic, and thermophysical properties of this new materials group and the advantages they promise for the processing and manufacturing of components are presented. The possibilities for deploying bulk metallic glasses in medical devices and lightweight construction are also set out. In these two areas, we discuss some results as to the biocompatibility of metallic glasses and their potential use in vascular intervention, as well as the properties of light-metal-based bulk metallic glasses in connection with their potential as a construction material. We also present ideas concerning the development of corrosion-resistant Mg-based glasses, and the manufacture and processing of light-metal-based composites.


Prof. Jörg F. Löffler Laboratory of Metal Physics and Technology Department of Materials Swiss Federal Institute of Technology (ETH) Zürich Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland Tel.: +41 44 632 2565 Fax: +41 44 633 1421

  1. The author is indebted to Gernot Kostorz for many fruitful discussions, and for his support over the last decade. He wishes him all the best for the future.

References

[1] W. Klement, R.H. Willens, P. Duwez: Nature 187 (1960) 869.10.1038/187869b0Suche in Google Scholar

[2] H.W. Kui, A.L. Greer, D. Turnbull: Appl. Phys. Lett. 45 (1984) 615.10.1063/1.95330Suche in Google Scholar

[3] A. Inoue, A. Kato, T. Zhang, S.G. Kim, T. Masumoto: Mater. Trans. JIM 32 (1991) 609.10.2320/matertrans1989.32.609Suche in Google Scholar

[4] T. Zhang, A. Inoue, T. Masumoto: Mater. Trans. JIM 32 (1991) 1005.10.2320/matertrans1989.32.1005Suche in Google Scholar

[5] A. Peker, W.L. Johnson: Appl. Phys. Lett. 63 (1993) 2342.10.1063/1.110520Suche in Google Scholar

[6] J.F. Löffler, J. Schroers, W.L. Johnson: Appl. Phys. Lett. 77 (2000) 681.10.1063/1.127084Suche in Google Scholar

[7] W.L. Johnson: MRS Bull. 24 (1999) 42.10.1557/S0883769400053252Suche in Google Scholar

[8] A. Inoue: Acta Mater. 48 (2000) 279.10.1016/S1359-6454(99)00300-6Suche in Google Scholar

[9] J.F. Löffler: Intermetallics 11 (2003) 529.10.1016/S0966-9795(03)00046-3Suche in Google Scholar

[10] X.H. Lin, W.L. Johnson: J. Appl. Phys. 78 (1995) 6514.10.1063/1.360537Suche in Google Scholar

[11] X.H. Lin,W.L. Johnson,W.K. Rhim: Mater. Trans. JIM 38 (1997) 473.10.2320/matertrans1989.38.473Suche in Google Scholar

[12] R.D. Conner, A.J. Rosakis, W.L. Johnson, D.M. Owen: Scripta mater. 37 (1997) 1373.10.1016/S1359-6462(97)00250-9Suche in Google Scholar

[13] W.H.Wang, F.Y. Li, M.X. Pan, D.Q. Zhao, R.J.Wang: Acta mater. 52 (2004) 715.10.1016/j.actamat.2003.10.008Suche in Google Scholar

[14] H. Choi-Yim, R.D. Conner, F. Szuecs, W.L. Johnson: Acta mater. 50 (2002) 2737.10.1016/S1359-6454(02)00113-1Suche in Google Scholar

[15] A. Inoue, B.L. Shen, A.R. Yavari, A.L. Greer: J. Mater. Res. 18 (2003) 1487.10.1557/JMR.2003.0205Suche in Google Scholar

[16] T. Zhang, A. Inoue: Mater. Trans. 43 (2002) 708.10.2320/matertrans.43.708Suche in Google Scholar

[17] H. Choi-Yim, D. Xu, M.L. Lind, J.F. Löffler,W.L. Johnson: Scripta mater. 54 (2006) 187.10.1016/j.scriptamat.2005.09.040Suche in Google Scholar

[18] S.G. Kim, A. Inoue, T. Masumoto: Mater. Trans. JIM 11 (1990) 929.10.2320/matertrans1989.31.929Suche in Google Scholar

[19] A. Inoue, T. Masumoto: Mater. Sci. Eng. A 133 (1991) 6.10.1016/0921-5093(91)90004-7Suche in Google Scholar

[20] S.Y. Su, Y. He, G.J. Shiflet, S.J. Poon: Mater. Sci. Eng. A 185 (1994) 115.10.1016/0921-5093(94)90934-2Suche in Google Scholar

[21] A. Inoue: Prog. Mater. Sci. 43 (1998) 365.10.1016/S0079-6425(98)00005-XSuche in Google Scholar

[22] C.L. Ma, S. Ishihara, H. Soejima, N. Nishiyama, A. Inoue: Mater. Trans. 45 (2004) 1802.10.2320/matertrans.45.1802Suche in Google Scholar

[23] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka: Acta mater. 49 (2001) 2645.10.1016/S1359-6454(01)00181-1Suche in Google Scholar

[24] F. Spaepen: Acta mater. 25 (1976) 407.10.1016/0001-6160(77)90232-2Suche in Google Scholar

[25] W.J. Wright, R.B. Schwarz, W.D. Nix: Mater. Sci. Eng. A 319 (2001) 229.10.1016/S0921-5093(01)01066-8Suche in Google Scholar

[26] C.C. Hays, C.P. Kim, W.L. Johnson: Phys. Rev. Lett. 84 (2000) 2901.10.1103/PhysRevLett.84.2901Suche in Google Scholar

[27] G. He, J. Eckert, W. Löser, L. Schultz: Nature Mater. 2 (2003) 33.10.1038/nmat792Suche in Google Scholar

[28] T.C. Hufnagel, C. Fan, R.T. Ott, J. Li, S. Brennan: Intermetallics 10 (2002) 1163.10.1016/S0966-9795(02)00157-7Suche in Google Scholar

[29] H. Choi-Yim, R. Busch, U. Köster, W.L. Johnson: Acta mater. 47 (1999) 2455.10.1016/S1359-6454(99)00103-2Suche in Google Scholar

[30] T. Wada, A. Inoue, A.L. Greer: Appl. Phys. Lett. 86 (2005) 251907.10.1063/1.1953884Suche in Google Scholar

[31] J. Schroers, W.L. Johnson: Phys. Rev. Lett. 93 (2004) 255506.10.1103/PhysRevLett.93.255506Suche in Google Scholar

[32] J.R. Rice, R. Thomson: Phil. Mag. 29 (1974) 73.10.1080/14786437408213555Suche in Google Scholar

[33] J.J. Lewandowski, W.H. Wang, A.L. Greer: Phil. Mag. Lett. 85 (2005) 77.10.1080/09500830500080474Suche in Google Scholar

[34] W. Löser, J. Das, A. Güth, H.-J. Klauß, C. Michel, U. Kühn, J. Eckert, S.K. Roy, L. Schultz: Intermetallics 12 (2004) 1153.10.1016/j.intermet.2004.04.017Suche in Google Scholar

[35] M.E. Siegrist, J.F. Löffler: Phys. Rev. Lett. (submitted for publication).Suche in Google Scholar

[36] R. Alben, J.J. Becker, M.C. Chi: J. Appl. Phys. 49 (1978) 1653.10.1063/1.324881Suche in Google Scholar

[37] C.H. Smith, in: H.H. Liebermann (Ed.), Rapidly solidified alloys: processes, structures, properties, applications, Marcel Dekker, New York (1993) 617.10.1201/9781482233995Suche in Google Scholar

[38] Y. Yoshizawa, S. Oguma, K. Yamauchi: J. Appl. Phys. 64 (1988) 6044.10.1063/1.342149Suche in Google Scholar

[39] G. Herzer: J. Magn. Magn. Mater. 112 (1992) 258.10.1016/0304-8853(92)91168-SSuche in Google Scholar

[40] J.F. Löffler, J. Meier, B. Doudin, J.-Ph. Ansermet, W. Wagner: Phys. Rev. B 57 (1998) 2915.10.1103/PhysRevB.57.2915Suche in Google Scholar

[41] J.F. Löffler, H.B. Braun, W. Wagner: Phys. Rev. Lett. 85 (2000) 1990.10.1103/PhysRevLett.85.1990Suche in Google Scholar PubMed

[42] J.F. Löffler,W.Wagner, H.B. Braun, G. Kostorz, A.Wiedenmann: Phys. Rev. B 71 (2005) 134410.10.1103/PhysRevB.71.134410Suche in Google Scholar

[43] T.D. Shen, R.B. Schwarz: Appl. Phys. Lett. 75 (1999) 49.10.1063/1.124273Suche in Google Scholar

[44] K. Amiya, A. Urata, N. Nishiyama, A. Inoue: J. Appl. Phys. 97 (2005) 10F913.10.1063/1.1859211Suche in Google Scholar

[45] D.E. Polk: Scripta Metall. 4 (1970) 117.10.1016/0036-9748(70)90175-4Suche in Google Scholar

[46] G. Mastrogiacomo, J. Kradolfer, J.F. Löffler: J. Appl. Phys. 99 (2006) (in press).10.1063/1.2165402Suche in Google Scholar

[47] M.J. O’Shea, A.L. Al-Sharif: J. Appl. Phys. 75 (1994) 6673.10.1063/1.356891Suche in Google Scholar

[48] A.A. Kündig, M. Cucinelli, P.J. Uggowitzer, A. Dommann: Microelectr. Eng. 67 (2003) 405.10.1016/S0167-9317(03)00096-0Suche in Google Scholar

[49] O. Buchanan: MRS Bull. 27 (2002) 850.10.1557/mrs2002.76Suche in Google Scholar

[50] http://www.liquidmetal.com/news/dsp.press.aspSuche in Google Scholar

[51] J.V. Byrne, C.B.T. Adams, R.S.C. Kerr, A.J. Molyneux: Br. J. Neurosurg. 9 (1995) 585.10.1080/02688699550040864Suche in Google Scholar PubMed

[52] J.V. Byrne, A.J. Molyneux, R.P. Brennan, S.A. Renowden: J. Neurol. Neurosurg. Psychiatry 59 (1995) 616.10.1136/jnnp.59.6.616Suche in Google Scholar PubMed PubMed Central

[53] T.W. Malisch, G. Guglielmi, F. Vinuela, G. Duckwiler, Y.P. Gobin, N.A. Martin, J.G. Frazee: J. Neurosurg. 87 (1997) 176.10.3171/jns.1997.87.2.0176Suche in Google Scholar PubMed

[54] M. Hirabayashi, M. Ohta, D.A. Rüfenacht, B. Chopard: Phys. Rev. E 68 (2003) 021918.10.1103/PhysRevE.68.021918Suche in Google Scholar

[55] A. Inoue, N. Nishiyama, H. Kimura: Mater. Trans. JIM 38 (1997) 179.10.2320/matertrans1989.38.179Suche in Google Scholar

[56] K. Jin, J.F. Löffler: Appl. Phys. Lett. 86 (2005) 241909.10.1063/1.1948513Suche in Google Scholar

[57] S. Buzzi, K. Jin, P.J. Uggowitzer, S. Tosatti, I. Gerber, J.F. Löffler: Intermetallics 4 (2006) (in press).Suche in Google Scholar

[58] H. Men, W.T. Kim, D.H. Kim: Mater. Trans. 44 (2003) 2141.10.2320/matertrans.44.2141Suche in Google Scholar

[59] A. Inoue, S. Sobu, D.V. Louzguine, H. Kimura, K. Sasamori: J. Mater. Res. 19 (2004) 1539.10.1557/JMR.2004.0206Suche in Google Scholar

[60] K. Amiya, A. Inoue: Mater. Trans. 43 (2002) 81.10.2320/matertrans.43.81Suche in Google Scholar

[61] E.S. Park, D.H. Kim: J. Mater. Res. 20 (2005) 1465.10.1557/JMR.2005.0181Suche in Google Scholar

[62] F.Q. Guo, S.J. Poon, G.J. Shiflet: Appl. Phys. Lett. 84 (2004) 37.10.1063/1.1637940Suche in Google Scholar

[63] G. Song, A. Atrens: Adv. Eng. Mater. 5 (2003) 837.10.1002/adem.200310405Suche in Google Scholar

[64] Y.K. Xu, J. Xu: Scr. Mater. 49 (2003) 843.10.1016/S1359-6462(03)00447-0Suche in Google Scholar

[65] Y.K. Xu, H. Ma, J. Xu, E. Ma: Acta Mater. 53 (2005) 1857.10.1016/j.actamat.2004.12.036Suche in Google Scholar

[66] J.M. Kim, K. Shin, K.T. Kim, W.J. Jung: Scripta mater. 49 (2003) 687.10.1016/S1359-6462(03)00392-0Suche in Google Scholar

Received: 2005-10-27
Accepted: 2005-12-22
Published Online: 2022-01-11

© 2006 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Professor Dr. Gernot Kostorz 65 years
  3. Dislocation micromechanisms under single slip conditions
  4. Characterisation of short-range order using dislocations
  5. Between microscopic and mesoscopic descriptions of twin–twin interaction
  6. Influence of the thermoelastic effect on the acoustic properties of pure metals at low temperatures
  7. Recent progress in the area of bulk metallic glasses
  8. Formation of the ABC6-type ordered structure in fcc alloys
  9. Short-range order in Fe-21.9 at.% Al
  10. Criteria for developing castable, creep-resistant aluminum-based alloys – A review
  11. Phase decomposition and precipitation of metastable A2 phase in B2 ordered Co–Al–Fe alloys
  12. Atomic migration and ordering phenomena in bulk and thin films of FePd and FePt
  13. Late-stage coarsening of oil droplets of excess oil in microemulsions following a temperature quench
  14. Small-angle scattering from spherical particles on randomly oriented interfaces
  15. Ripening of L12 Ni3Ti precipitates in the framework of the trans-interface diffusion-controlled theory of particle coarsening
  16. Texture evolution in equiaxed polycrystalline L10-ordered FePd during coarsening at 600 °C
  17. Modulated structures in amorphous films of Cr-silicide prepared by electron-beam-deposition
  18. Early stages of nucleation and growth of Guinier –Preston zones in Al–Zn–Mg and Al–Zn–Mg–Cu alloys
  19. Experimental and theoretical characterization of Al3Sc precipitates in Al–Mg–Si–Cu–Sc–Zr alloys
  20. Ag2Al plates in Al–Ag alloys
  21. A critical analysis of the composite model as applied to high-temperature creep of Al and an Al–Mg alloy
  22. Damage behaviour of an Al2O3 particle-reinforced 6061 alloy induced by monotonic and cyclic deformation
  23. Deformation behaviour of ultrafine-grained magnesium with 3 vol.% graphite
  24. Press/Presse
  25. Conferences/Konferenzen
  26. Frontmatter
  27. Editorial
  28. Professor Dr. Gernot Kostorz 65 years
  29. Articles BBasic
  30. Dislocation micromechanisms under single slip conditions
  31. Characterisation of short-range order using dislocations
  32. Between microscopic and mesoscopic descriptions of twin–twin interaction
  33. Influence of the thermoelastic effect on the acoustic properties of pure metals at low temperatures
  34. Recent progress in the area of bulk metallic glasses
  35. Formation of the ABC6-type ordered structure in fcc alloys
  36. Short-range order in Fe-21.9 at.% Al
  37. Criteria for developing castable, creep-resistant aluminum-based alloys – A review
  38. Phase decomposition and precipitation of metastable A2 phase in B2 ordered Co–Al–Fe alloys
  39. Atomic migration and ordering phenomena in bulk and thin films of FePd and FePt
  40. Late-stage coarsening of oil droplets of excess oil in microemulsions following a temperature quench
  41. Small-angle scattering from spherical particles on randomly oriented interfaces
  42. Ripening of L12 Ni3Ti precipitates in the framework of the trans-interface diffusion-controlled theory of particle coarsening
  43. Articles AApplied
  44. Texture evolution in equiaxed polycrystalline L10-ordered FePd during coarsening at 600 °C
  45. Modulated structures in amorphous films of Cr-silicide prepared by electron-beam-deposition
  46. Early stages of nucleation and growth of Guinier –Preston zones in Al–Zn–Mg and Al–Zn–Mg–Cu alloys
  47. Experimental and theoretical characterization of Al3Sc precipitates in Al–Mg–Si–Cu–Sc–Zr alloys
  48. Ag2Al plates in Al–Ag alloys
  49. A critical analysis of the composite model as applied to high-temperature creep of Al and an Al–Mg alloy
  50. Damage behaviour of an Al2O3 particle-reinforced 6061 alloy induced by monotonic and cyclic deformation
  51. Deformation behaviour of ultrafine-grained magnesium with 3 vol.% graphite
  52. Notifications/Mitteilungen
  53. Press/Presse
  54. Conferences/Konferenzen
Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0039/html
Button zum nach oben scrollen