Startseite Between microscopic and mesoscopic descriptions of twin–twin interaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Between microscopic and mesoscopic descriptions of twin–twin interaction

  • Peter Müllner EMAIL logo
Veröffentlicht/Copyright: 11. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

On a microscopic scale, deformation twinning is carried by the motion of twinning disconnections. A disconnection is an interfacial line defect characterized by a Burgers vector, a line vector, and a step vector. The Burgers vector (dislocation component of the disconnection) carries the deformation while the step vector (ledge component) carries the transformation from one twin variant to the other. On a mesoscopic scale, the deformation produced by twinning is a simple shear. A moving disclination dipole provides a mesoscopic model accounting for the twinning shear. Twin – twin interaction processes including the intersection of twins, the formation of structured twins, and the nucleation of cracks, may feature very complex mechanisms when analyzed on a microscopic scale. It turns out, however, that these mechanisms are controlled by the properties of large disconnection groups containing up to 10 000 disconnections and more. These properties are sufficiently well approximated in the disclination dipole model. The disclination model for twin – twin interaction predicts orientation and volume fractions of secondary twins. The model also predicts the nucleation of cracks and crack growth. The disclination model was used to analyze the ductile-to-brittle transition of austenitic steel deformed at low temperature. The mesoscopic disclination model for twinning is successful because it accounts for the properties and mechanisms of disconnection groups.


Prof. Peter Müllner Department of Materials Science and Engineering Boise State University 1910 University Dr., MS 2075 Boise, ID 83725, USA Tel.: +1 208 426 5136 Fax: +1 208 426 2470

References

[1] G. Kostorz, P. Müllner: Z. Metallk. 96 (2005) 703.10.3139/146.101090Suche in Google Scholar

[2] H. Heinrich, G. Kostorz, B. Heeb, R. Müller, T. Schweizer, L.J. Gaukler: Ultramicroscopy 49 (1993) 265.10.1016/0304-3991(93)90233-NSuche in Google Scholar

[3] J. Dutkiewicz, G. Kostorz: Mater. Sci. Eng. A 132 (1991) 267.10.1016/0921-5093(91)90383-XSuche in Google Scholar

[4] J. Dutkiewicz, G. Kostorz: Phys. Stat. Sol. (a) 123 (1991) 63.10.1002/pssa.2211230104Suche in Google Scholar

[5] H. Heinrich, H.P. Karnthaler, T. Waitz, G. Kostorz: Mater. Sci. Eng. A 272 (1999) 238.10.1016/S0921-5093(99)00474-8Suche in Google Scholar

[6] H. Heinrich, P. Szászvári, D. Wilkins, G. Kostorz, in: F. Aldinger, H. Mughrabi (Eds.), Werkstoffwoche 96, DGM Informationsgesellschaft mbH (1997) 447.Suche in Google Scholar

[7] P. Szászvári, D.Wilkins, H. Heinrich, G. Kostorz: Mater. Sci. Eng. A 234–236 (1997) 354.10.1016/S0921-5093(97)00228-1Suche in Google Scholar

[8] H. Heinrich, V. Abcherli, D.J. Wilkins, G. Kostorz: Mater. Res. Sypm. Proc. 252 (MRS, Warrendale, 1999) KK1.4.1.Suche in Google Scholar

[9] M. Terheggen, H. Heinrich, G. Kostorz, A. Romeo, D. Baetzner, A.N. Tiwari, A. Bosio, N. Romeo: Thin Solid Films 431–432 (2003) 262.10.1016/S0040-6090(03)00268-2Suche in Google Scholar

[10] V. Nadenau, D. Hariskos, H.-W. Schock, M. Krejci, F.-J. Haug, A.N. Tiwari, H. Zogg, G. Kostorz: J. Appl. Phys. 85 (1999) 534.10.1063/1.369486Suche in Google Scholar

[11] M. Krejci, A.N. Tiwari, P. Schwander, H. Heinrich, H. Zogg, G. Kostorz, in: EUREM-11, Vol. 2, edited and published Comm. Europ. Soc. Microsc. (Brussels 1998) 230.Suche in Google Scholar

[12] M. Krejci, A.N. Tiwari, H. Zogg, P. Schwander, H. Heinrich, G. Kostorz: J. Appl. Phys. 81 (1997) 6100.10.1063/1.364359Suche in Google Scholar

[13] D. Brewster: Edinburgh J. of Sci. 9 (1828) 311.Suche in Google Scholar

[14] F. Pfaff: Pogg. Ann. Phys. Chem. 107 (1859) 333.10.1002/andp.18591830615Suche in Google Scholar

[15] E. Reusch: Pogg. Ann. Phys. Chem. 132 (1867) 441.10.1002/andp.18672081106Suche in Google Scholar

[16] G. Rose: Abh. Königl. Akad. Wiss. Berlin (1869) 57.Suche in Google Scholar

[17] A. Johnson: Fortsch. Min. Kristall. Petrogr. 3 (1913) 93.Suche in Google Scholar

[18] J.W. Christian, S. Mahajan: Prog. Mater. Sci. 39 (1995) 1.10.1016/0079-6425(94)00007-7Suche in Google Scholar

[19] F.C. Frank, J.H. van der Merwe: Proc. Roy. Soc. London A 198 (1949) 205.10.1098/rspa.1949.0095Suche in Google Scholar

[20] A.H. Cottrell, B.A. Bilby: Phil. Mag. (ser. 7) 42/329 (1951) 573.10.1080/14786445108561272Suche in Google Scholar

[21] A. Seeger: Z. Metallk. 44 (1953) 247.Suche in Google Scholar

[22] J.P. Hirth, R.W. Balluffi: Acta Metall. 21 (1973) 929.10.1016/0001-6160(73)90150-8Suche in Google Scholar

[23] A.H. King, Smith: Acta Cryst. A 36 (1980) 335.10.1107/S0567739480000782Suche in Google Scholar

[24] A. Brokman: Acta Cryst. A37 (1981) 500.10.1107/S0567739481001198Suche in Google Scholar

[25] A.H. King: Acta Metall. 30 (1982) 419.10.1016/0001-6160(82)90222-XSuche in Google Scholar

[26] J.P. Hirth: J. Phys. Chem. Sol. 55 (1994) 985.10.1016/0022-3697(94)90118-XSuche in Google Scholar

[27] R.C. Pond, J.P. Hirth: Solid State Physics 47 (1994) 287.10.1016/S0081-1947(08)60641-4Suche in Google Scholar

[28] J.P. Hirth, R.C. Pond: Acta Mater. 44 (1996) 4749.10.1016/S1359-6454(96)00132-2Suche in Google Scholar

[29] R.C. Pond, F. Sarrazit: Interface Science 4 (1996) 99.Suche in Google Scholar

[30] R.C. Pond, S. Celotto: Intern. Mater. Rev. 48 (2003) 225.10.1179/095066003225010245Suche in Google Scholar

[31] R.W. Armstrong: Science 162 (1968) 799.10.1126/science.162.3855.799Suche in Google Scholar

[32] A.E. Romanov, V.I. Vladimirov, in: F.R.N. Nabarro (Ed.), Dislocations in Solids, Vol. 9, (Elsevier, Amsterdam 1992) 191.Suche in Google Scholar

[33] F. Kroupa, L. Lejček: Sper. 3, Konf. Čs. Fyzika Olemeuc (1974) 162 (in Czech).Suche in Google Scholar

[34] F. Kroupa, L. Lejček: Solid State Phen. 87 (2002) 1.10.4028/www.scientific.net/SSP.87.1Suche in Google Scholar

[35] A.E. Romanov, W. Pompe, J.S. Speck: J. Appl. Phys. 79 (1996) 4037.10.1063/1.361866Suche in Google Scholar

[36] A.H. King, Y. Zhu: Phil. Mag. A 67 (1993) 1037.10.1080/01418619308213974Suche in Google Scholar

[37] A.H. King, F.-R. Chen, L. Chang, J.J. Kai: Interf. Sci. 5 (1997) 287.10.1023/A:1008641103284Suche in Google Scholar

[38] P. Pirouz, R. Chaim, U. Dahmen, K.H. Westmacott: Acta Metall. Mater. 38 (1990) 313.10.1016/0956-7151(90)90061-KSuche in Google Scholar

[39] U. Dahmen, K.H. Westmacott, P. Pirouz, R. Chaim: Acta Metall. Mater. 38 (1990) 323.10.1016/0956-7151(90)90062-LSuche in Google Scholar

[40] C. Boulesteix: Phys. Stat. Sol. (a) 86 (1984) 11.10.1002/pssa.2210860102Suche in Google Scholar

[41] B.M. Park, S.J. Chung: J. Am. Ceram. Soc. 77 (1994) 3194.Suche in Google Scholar

[42] P. Müllner, V.A. Chernenko, D. Mukherji, G. Kostorz: MRS Symp. Porc. Vol. 785 (2004) 415.Suche in Google Scholar

[43] A. Coujou, A. Beneteau, N. Clement: Acta Metall. Mater. 40 (1992) 337.10.1016/0956-7151(92)90307-ZSuche in Google Scholar

[44] L. Rémy: Metall. Trans. A 12 (1981) 387.10.1007/BF02648536Suche in Google Scholar

[45] S. Mahajan, G.Y. Chin: Acta Metall. 22 (1974) 1113.10.1016/0001-6160(74)90066-2Suche in Google Scholar

[46] D. Hull: Acta Metall. 8 (1960) 11.10.1016/0001-6160(60)90133-4Suche in Google Scholar

[47] P.G. Partridge: Metall. Rev. 12/118 (1967) 169.10.1179/imr.1967.12.1.169Suche in Google Scholar

[48] F. Appel: Mater. Sci. Eng. R 22 (1998) 187.10.1016/S0927-796X(97)00018-1Suche in Google Scholar

[49] T.H. Blewitt, R.R. Coltman, J.K. Redman: J. Appl. Phys. 28 (1957) 651.10.1063/1.1722824Suche in Google Scholar

[50] G.T. Gray III: Acta Metall. 36 (1988) 1745.10.1016/0001-6160(88)90242-8Suche in Google Scholar

[51] D.L. Medlin, C.B. Carter, J.E. Angelo, M.J. Mills: Phil. Mag. A 75 (1997) 733.10.1080/01418619708207199Suche in Google Scholar

[52] D.L. Medlin, in: S. Ankem, C.S. Pande (Eds.), Advances in Twinning, (TMS, Warrendale, PA 1999) 29.Suche in Google Scholar

[53] M. Peach, J.S. Koehler: Phys. Rev. 80 (1950) 436.10.1103/PhysRev.80.436Suche in Google Scholar

[54] P. Müllner, K. Ullakko: Phys. Stat. Sol. (b) 208 (1998) R1.10.1002/(SICI)1521-3951(199807)208:1<R1::AID-PSSB99991>3.0.CO;2-4Suche in Google Scholar

[55] E. Snoeck, L. Normand, A. Thorel, C. Roucau: Phase Transitions 46 (1994) 77.10.1080/01411599408200317Suche in Google Scholar

[56] P. Müllner, W.M. Kriven: J. Mater. Res. 12 (1997) 1771.10.1557/JMR.1997.0244Suche in Google Scholar

[57] P. Müllner, V.A. Chernenko, M. Wollgarten, G. Kostorz: J. Appl. Phys. 92 (2002) 6708.10.1063/1.1513875Suche in Google Scholar

[58] P. Müllner, V.A. Chernenko, G. Kostorz: J. Magn. Magn. Mater. 267 (2003) 325.10.1016/S0304-8853(03)00400-1Suche in Google Scholar

[59] S. Rajasekhara, P.J. Ferreira: Scripta Mater. 53 (2005) 817.10.1016/j.scriptamat.2005.06.003Suche in Google Scholar

[60] R.D. James, M. Wuttig: Phil. Mag. A 77 (1998) 1273.10.1080/01418619808214252Suche in Google Scholar

[61] Otsuka, T. Ohba, M. Tokonami, C.M. Wayman: Scripta Metall. Mater. 29 (1993) 1359.10.1016/0956-716X(93)90139-JSuche in Google Scholar

[62] P. Müllner, D. Mukherji, M. Aguirre, R. Erni, G. Kostorz: TMS Conf. Proc. Solid→solid phase transformations in inorganic materials (PTM’05), Phoenix, AZ, May 29–June 3, 2005, TMS, in press.Suche in Google Scholar

[63] P. Pirouz, J.W. Yang: Ultramicroscopy 51 (1993) 189.10.1016/0304-3991(93)90146-OSuche in Google Scholar

[64] M. Lambrigger, H.A. Calderon, G. Kostorz: Z. Metallkd. 83 (1992) 624.Suche in Google Scholar

[65] A.S. Sologubenko, P. Müllner, H. Heinrich, G. Kostorz: Z. Metallkd. 95 (2004) 486.10.3139/146.017981Suche in Google Scholar

[66] J.P. Hirth, J. Lothe: Theory of Dislocations, 2nd Edition, Krieger Publ. (Malbar, FL 1992).Suche in Google Scholar

[67] G. Kostorz, H. Calderon, J. Martin (Eds.): Fundamental Aspects of Dislocation Interaction: Low Energy Dislocation Structures III, (Elsevier Sequoia, Lausanne 1993, reprinted from Mater. Sci. Eng. A 164).Suche in Google Scholar

[68] S.V. Kamat, J.P. Hirth, P. Müllner: Phil. Mag. A 73 (1996) 669.10.1080/01418619608242989Suche in Google Scholar

[69] Y.Q. Sun, P.M. Hazzledine, J.W. Christian: Phil. Mag. A 68 (1993) 471.10.1080/01418619308213976Suche in Google Scholar

[70] Y.Q. Sun, P.M. Hazzledine, J.W. Christian: Phil. Mag. A 68 (1993) 495.10.1080/01418619308213977Suche in Google Scholar

[71] P. Müllner, C. Solenthaler: Phil. Mag. Lett. 69 (1994) 111.10.1080/09500839408241578Suche in Google Scholar

[72] P. Müllner, A.E. Romanov: Scripta Metall. Mater. 31 (1994) 1657.10.1016/0956-716X(94)90459-6Suche in Google Scholar

[73] P. Müllner, C. Solenthaler: Phil. Mag. Lett. 69 (1994) 171.10.1080/09500839408241588Suche in Google Scholar

[74] P. Müllner: Sol. State Phen. 87 (2002) 227.10.4028/www.scientific.net/SSP.87.227Suche in Google Scholar

[75] F.C. Frank, in: O.R.N. Washington (Ed.), Proc. Int. Conf. Plastic Deform. of Crstal. Sol., Mellon Inst. Pittsburgh, May 19, 20 (1950) 89.Suche in Google Scholar

[76] G. Schöck, in: F.R.N. Nabarro (Ed.), Dislocations in Solids, Vol. 3 (Elsevier, Amsterdam 1980) 63.Suche in Google Scholar

[77] P. Müllner: Mater. Sci. Eng. A 234 –236 (1997) 94.10.1016/S0921-5093(97)00196-2Suche in Google Scholar

[78] N.A. Pertsev, A.E. Romanov: Mech. Comp. Mater. 19 (1983) 565.10.1007/BF00604454Suche in Google Scholar

[79] P. Müllner, P. Pirouz: Mater. Sci. Eng. A 233 (1997) 139.10.1016/S0921-5093(97)00058-0Suche in Google Scholar

[80] P. Müllner, C. Solenthaler, M.O. Speidel, in: M.H. Yoo, M.Wuttig (Eds.), Twinning in Advanced Materials (TMS, Warrendale, PA 1994) 483.Suche in Google Scholar

[81] L.C. Zhang, G.L. Chen, H.Q. Ye: Mater. Sci. Eng. A 299 (2001) 267.10.1016/S0921-5093(00)01379-4Suche in Google Scholar

[82] K. Saito: J. Phys. Soc. Jap. 7 (1969) 1234.10.1143/JPSJ.27.1234Suche in Google Scholar

[83] V.S. Litvinov, A.A. Popov, A.A. Elkina, A.V. Litvinov: Phys. Met. Metallogr. 83 (1997) 568.Suche in Google Scholar

[84] P. Müllner, C. Solenthaler, M.O. Speidel: Acta Metall. Mater. 42 (1994) 1727.10.1016/0956-7151(94)90382-4Suche in Google Scholar

[85] P. Müllner, A.E. Romanov: Acta Mater. 48 (2000) 2323.10.1016/S1359-6454(00)00025-2Suche in Google Scholar

[86] P. Müllner, C. Solenthaler, J.P. Uggowitzer, M.O. Speidel: Acta Metall. Mater. 42 (1994) 2211.10.1016/0956-7151(94)90300-XSuche in Google Scholar

[87] W.M. Kriven, in: M.H. Yoo, M. Wuttig (Eds.), Twinning in Advanced Materials (TMS, Warrendale, PA 1994) 435.Suche in Google Scholar

[88] E. Snoeck, L. Normand, A. Thorel, C. Roucau: Phase Trans. 46 (1994) 77.10.1080/01411599408200317Suche in Google Scholar

[89] K. Wolf, H.-J. Gudladt, H.A. Calderon, G. Kostorz: Acta Metall. Mater. 42 (1994) 3759.10.1016/0956-7151(94)90441-3Suche in Google Scholar

[90] F. Laves: Die Naturwissenschaften 39 (1952) 546 (in German).Suche in Google Scholar

[91] F. Laves: Die Naturwissenschaften 39 (1952) 547 (in German).Suche in Google Scholar

[92] A.M. Kosevich, V.S. Boiko: Soviet Physics Usp. 14 (1971) 286 (translated from Usp. Fiz. Nauk. 104 (1971) 201.10.1070/PU1971v014n03ABEH004704Suche in Google Scholar

[93] T.E. Mitchell, J.P. Hirth: Acta Metall. Mater. 39 (1991) 1711.10.1016/0956-7151(91)90260-8Suche in Google Scholar

[94] A. Zisman, E. Nesterova, V. Rybin, C. Teodosiu: Scripta Mater. 46 (2002) 729.10.1016/S1359-6462(02)00061-1Suche in Google Scholar

[95] A. Zisman, C. Teodosiu, V. Rybin: Comp. Mater. Sci. 16 (1999) 307.10.1016/S0927-0256(99)00073-7Suche in Google Scholar

[96] A. Zisman, V. Rybin: Sol. State Phen. 87 (2002) 147.10.4028/www.scientific.net/SSP.87.147Suche in Google Scholar

Received: 2005-11-21
Accepted: 2005-12-13
Published Online: 2022-01-11

© 2006 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Professor Dr. Gernot Kostorz 65 years
  3. Dislocation micromechanisms under single slip conditions
  4. Characterisation of short-range order using dislocations
  5. Between microscopic and mesoscopic descriptions of twin–twin interaction
  6. Influence of the thermoelastic effect on the acoustic properties of pure metals at low temperatures
  7. Recent progress in the area of bulk metallic glasses
  8. Formation of the ABC6-type ordered structure in fcc alloys
  9. Short-range order in Fe-21.9 at.% Al
  10. Criteria for developing castable, creep-resistant aluminum-based alloys – A review
  11. Phase decomposition and precipitation of metastable A2 phase in B2 ordered Co–Al–Fe alloys
  12. Atomic migration and ordering phenomena in bulk and thin films of FePd and FePt
  13. Late-stage coarsening of oil droplets of excess oil in microemulsions following a temperature quench
  14. Small-angle scattering from spherical particles on randomly oriented interfaces
  15. Ripening of L12 Ni3Ti precipitates in the framework of the trans-interface diffusion-controlled theory of particle coarsening
  16. Texture evolution in equiaxed polycrystalline L10-ordered FePd during coarsening at 600 °C
  17. Modulated structures in amorphous films of Cr-silicide prepared by electron-beam-deposition
  18. Early stages of nucleation and growth of Guinier –Preston zones in Al–Zn–Mg and Al–Zn–Mg–Cu alloys
  19. Experimental and theoretical characterization of Al3Sc precipitates in Al–Mg–Si–Cu–Sc–Zr alloys
  20. Ag2Al plates in Al–Ag alloys
  21. A critical analysis of the composite model as applied to high-temperature creep of Al and an Al–Mg alloy
  22. Damage behaviour of an Al2O3 particle-reinforced 6061 alloy induced by monotonic and cyclic deformation
  23. Deformation behaviour of ultrafine-grained magnesium with 3 vol.% graphite
  24. Press/Presse
  25. Conferences/Konferenzen
  26. Frontmatter
  27. Editorial
  28. Professor Dr. Gernot Kostorz 65 years
  29. Articles BBasic
  30. Dislocation micromechanisms under single slip conditions
  31. Characterisation of short-range order using dislocations
  32. Between microscopic and mesoscopic descriptions of twin–twin interaction
  33. Influence of the thermoelastic effect on the acoustic properties of pure metals at low temperatures
  34. Recent progress in the area of bulk metallic glasses
  35. Formation of the ABC6-type ordered structure in fcc alloys
  36. Short-range order in Fe-21.9 at.% Al
  37. Criteria for developing castable, creep-resistant aluminum-based alloys – A review
  38. Phase decomposition and precipitation of metastable A2 phase in B2 ordered Co–Al–Fe alloys
  39. Atomic migration and ordering phenomena in bulk and thin films of FePd and FePt
  40. Late-stage coarsening of oil droplets of excess oil in microemulsions following a temperature quench
  41. Small-angle scattering from spherical particles on randomly oriented interfaces
  42. Ripening of L12 Ni3Ti precipitates in the framework of the trans-interface diffusion-controlled theory of particle coarsening
  43. Articles AApplied
  44. Texture evolution in equiaxed polycrystalline L10-ordered FePd during coarsening at 600 °C
  45. Modulated structures in amorphous films of Cr-silicide prepared by electron-beam-deposition
  46. Early stages of nucleation and growth of Guinier –Preston zones in Al–Zn–Mg and Al–Zn–Mg–Cu alloys
  47. Experimental and theoretical characterization of Al3Sc precipitates in Al–Mg–Si–Cu–Sc–Zr alloys
  48. Ag2Al plates in Al–Ag alloys
  49. A critical analysis of the composite model as applied to high-temperature creep of Al and an Al–Mg alloy
  50. Damage behaviour of an Al2O3 particle-reinforced 6061 alloy induced by monotonic and cyclic deformation
  51. Deformation behaviour of ultrafine-grained magnesium with 3 vol.% graphite
  52. Notifications/Mitteilungen
  53. Press/Presse
  54. Conferences/Konferenzen
Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2006-0037/html
Button zum nach oben scrollen